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The aim of the supplementary information is to supply
some of intermediary steps skipped over in the main text.
Equations of the main text are referred to with a number
preceded by M.

I. FINITE OPS

An infinite sequence of polynomials defined by a TTRR
(M6) in the case when some of the coefficients {λk} equals
zero (e.g. λN = 0) is called weakly orthogonal polynomial
system (see p. 23 of Ref. [1] or Ref. [2]). The present
work suggests that it is more appropriate to view such a
weakly orthogonal polynomial system as composed of (at
least) two independent parts:

• a (at least one) finite sequence of polynomials de-
fined by a TTRR (M6) with λk > 0 for k < N

• an infinite orthogonal polynomial sequence of quo-
tient polynomials {Qk} defined by a suitably mod-
ified TTRR (M6)

and to focus on each of the parts independently. Since the
latter is well described, we summarize here some of the
elementary results for the finite orthogonal polynomial
sequences {Pk}

N−1
k=1 . The main focus is on the case when

{cn} in a TTRR (M6) are real numbers.

A. Simplicity of zeros of {Pk}
N−1

k=1

If the coefficients λk > 0 for all k ∈ N in a TTRR
(M6) then the zeros of the polynomials Pk satisfying the
TTRR (M6) are real and simple (Theorem I-5.2 of Ref.
[1]). However, in our case λN = 0 and the classical results
obtained for the OPS [1] no longer apply. Nevertheless,
one can prove that the zeros of the polynomials of a fi-

nite orthogonal polynomial sequence {Pk}
N−1
k=1 satisfying

a TTRR (M6) with the coefficients λk > 0 for all k < N
are still real and simple.
Before proceeding any further, let us recall Favard’s

theorem (Theorem I-4.4 of Ref. [1]). The theorem says
that for given arbitrary sequences of complex numbers
{cn} and {λn} in the TTRR (M6) there always exists a
moment functional, that is a linear functional L acting
in the space of (complex) monic polynomials C[E], such
that the polynomials Pn defined by the TTRR (M6) are
orthogonal under L:

L(Pk Pl) = 0, k 6= l ∈ N. (1)

The functional L is unique if we impose the normalization
condition L(P0) = L(1) = µ0, where µ0 is a chosen posi-
tive constant. The coefficient nk = L(P 2

k ) is the square
of the norm of Pk that is given by Eq. (B3). The latter
implies the property of the weakly orthogonal polynomial
system that nk = 0, k ≥ N , so that all the polynomials

Pk with k ≥ N have zero norm. From Eq. (B3) it also
follows that the squared norms nk will be positive for
k < N if and only if λk > 0 for 1 ≤ k < N .

The following simple lemma obtained by Finkel et al.
(cf. Lemma 3 of Ref. [2]) is of paramount importance for
us:

Let Pn be the space of real polynomials of degree at
most n in z. If λk > 0 for k = 1, 2, . . . , n and ck is real
for k = 0, 1, . . . , n in a TTRR (M6), then L is positive-

definite on P2n. In other words, if p ∈ P2n is a real
polynomial of degree at most 2n, p 6= 0 and p(E) ≥ 0 for
all E ∈ R then L(p) > 0.

Now, given that L is positive-definite on P2n, Theorem
I-5.2 of Ref. [1], i.e. the theorem that guarantees sim-
plicity of zeros of an infinite OPS, can easily be extended
to the case of finite OPS. Indeed, all what the proof of
Theorem I-5.2 of Ref. [1] requires is that (cf. Theorem
I-2.1 of Ref. [1])

• L[π(x)Pl(x)] = 0 [cf. Eq. (B1)] holds for every
polynomial π(x) of degree k < l ≤ n

• L[xkPk(x)] > 0 for k ≤ n.

However the above conditions have been for k < N both
guaranteed by Favard’s theorem (Theorem I-4.4 of Ref.
[1]). Thus we have the following result:

If we have a TTRR (M6) with λk > 0 and ck real for
k = 0, 1, . . . ,N −1, then the polynomials of the resulting
finite orthogonal polynomial sequence {Pk}

N−1
k=1 have real

and simple zeros.

Surprisingly enough, the above result has been over-
looked by Finkel et al [2]. They needed an extra assump-
tion of the Hamiltonian H being fully algebraic to prove
the simplicity of zeros (cf. arguments above their Eq.
(47)).

B. Interlacing property of zeros of {Pk}
N
k=1

Interlacing property of zeros of an infinite OPS follows
from the identity (Eq. (I-4.13) of Ref. [1])

P ′
n(x)Pn−1(x)− Pn(x)P

′
n−1(x) > 0, (2)



2

which is valid for a positive-definite L. The identity is ob-
tained as a limiting case of the Christoffel-Darboux iden-
tity (Theorem I-4.5 of Ref. [1])

n−1∑
l=0

Pl(x)Pl(u)

nl
=

1

nn−1

Pn(x)Pn−1(u)− Pn(u)Pn−1(x)

x− u
·

(3)
Identity (2) combined with the simplicity of zeros is all
what is needed to prove the so-called separation theorem
for polynomial zeros (cf. Theorem I-5.3 of Ref. [1]). In
the case of a finite OPS we need its validity only up to
some critical value of n = N . But the latter is obvious as
the Christoffel-Darboux identity is a direct consequence
of a TTRR (M6) with λl > 0, and hence nl > 0, for
l < N .

Now one can prove that the zeros of PN have to inter-
lace the zeros of PN−1 even if the norm of PN is zero.
First, in contrast to pN and the TTRR (M5), PN is well
defined by the TTRR (M6). Second, identity (2) requires
the TTRR (M6) to be valid only up to n = N − 1, which
is the case. The interlacing of the zeros of PN−1 and PN

then follows from the identity (2) for n = N . Indeed, one
has (Eq. (I-5.3) of Ref. [1])

sgnP ′
n(xnk) = (−1)n−k, k ≤ n < N .

On substituting into Eq. (2) for n = N and x = xN−1,k,

−PN (xN−1,k)P
′
N−1(xN−1,k) > 0,

one finds

sgnPN (xN−1,k) = (−1)N−k.

Hence between any two subsequent zeros of PN−1 the po-
lynomial PN changes its sign. Given that PN is monic,
for sufficiently large x > xN−1,N−1 one would have
sgnPN (x) = 1 and PN (x) will also change sign once for
x > xN−1,N−1. Because PN cannot have more than N
zeros, all zeros of PN have to be simple.

Thus there is no typing error in the headings of the
last two subsections. Sec. IA establishes simplicity of
zeros of {Pk}

N−1
k=1 resulting from the positive-definiteness

of L on P2n. Sec. IB adds PN to the earlier set thanks
to the Christoffel-Darboux identity (3).

We have seen that the normalized pN is not defined
because of nN ≡ 0. This prohibits among others arriving
at (B4) from (M6). Nevertheless, with monic not nor-
malized PN being well defined by the TTRR (M6), the
latter provides a justification for considering the zeros of
the l.h.s. of Eq. (M7) as the zeros of PN .

C. Explicit expression for dνP (E) = w(E)dE

It is known from Boas’s theorem [3] (Theorems II-6.3-
4 of Ref. [1]) that there is a (not necessarily unique)

function of bounded variation ν such that

L(p) =

∫ ∞

−∞

p(E) dν(E) (4)

for an arbitrary polynomial p. Orthogonality relations
(M3) can be then expressed as

L(pn) :=

∫
pn(E)dνP (E) = δn0. (5)

An integral equation for w(E) in dνP (E) = w(E)dE is
obtained as follows [2, 4]. Multiplying relation (M2) by
dνP (E), taking the integral over E and using (5), one ob-
tains for an arbitrary eigenvector |E〉 ∈ VN of the Hamil-
tonian H ∫

|E〉 dνP (E) = e0. (6)

The basis element e0, or the cyclic vector of H , can be
obviously represented as a linear combination of eigen-
vectors of the Hamiltonian H corresponding to exactly
calculable energy levels in VN , or to the zeros of PN (x),

e0 =

N−1∑
k=0

wk|Ek〉. (7)

Substituting (7) into (6) one obtains with dνP (E) =
w(E)dE

∫
|E〉w(E)dE =

N−1∑
k=0

wk|Ek〉. (8)

This is equation first obtained by Krajewska, Ushveridze,
and Walczak [4] and later rigorously analyzed by Finkel
et al [2].

It was heuristically argued by Krajewska et al [4] that
w(E) solving Eq. (8) is given by (cf. Eq. (5.6) of Ref.
[4]; Eq. (49) of Ref. [2])

w(E) =
N−1∑
k=0

wk δ(E − Ek). (9)

Indeed, the discrete Stieltjes measure dνP (E) defined by
the function

νP (E) =

N−1∑
k=0

wk θ(E − Ek), (10)

where θ(x) is Heaviside’s step function, obviously satisfies
(8).

The coefficients wk can be found by solving a finite
non-degenerate system of linear equations (cf. Eq. (5.8)
of Ref. [4]; Eq. (50) of Ref. [2])

N−1∑
l=0

pk(El)wl = δk0, k = 0, 1, . . . ,N − 1. (11)
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Because the matrix M with elements Mkl := pk(El) has
orthogonal rows, the linear system (11) of N equations
for N unknowns uniquely determines the N constants wk

defined by Eq. (7) [2, 4]. The coefficients wk are in fact
positive (cf. Sec. I D). This makes νP (E) a nondecreasing
function of bounded variation.

It is not difficult to show that the orthogonality rela-
tions (1) are satisfied. Indeed, by the uniqueness of L
this is equivalent to showing that L given through νP (E)
of Eq. (10) satisfies the orthogonality relations (1) for
k, l < N . From the linear system (11) which determines
wk, and which derives from Eq. (5), we deduce that

L(pl) = δ0l, 0 ≤ l < N . (12)

The remaining orthogonality relations (1) then follows
inductively on applying the above relations (12) to the
TTRR (M5), and then continuing similarly as in the
proof of Favard’s theorem (Theorem I-4.4 of Ref. [1]).

D. Positivity of the coefficients wk

The positivity of the coefficients wk is obvious in Hay-
dock’s approach, because w(E) corresponds to the local
DOS n0(E). Nevertheless it is instructive to have its in-
dependent mathematical proof, which in a general setting
of finite OPS was essentially provided by Finkel et al (cf.
Proposition 4 of Ref. [2]). In brief, all the coefficients
wk in Eqs. (7), (9) and (10) are positive, wk > 0, for
0 ≤ k < N if ck is real for all 0 ≤ k < N and λk > 0 for
1 ≤ k < N in the TTRR (M6).

Proof: From Lemma 3 of Finkel et al [2] we know that
L is positive-definite on P2(N−1). Apply the lemma to

the polynomials
∏

0≤j 6=k<N−1(E − Ej)
2 ∈ P2(N−1) for

k = 0, 1, . . . ,N − 1. Then, with the moment functional
(9), one has

L(p) = wk

∏
0≤j 6=k<N−1

(Ek − Ej)
2 > 0,

from which it follows that necessarily wk > 0 for all k =
0, 1, . . . ,N − 1.

The moments of the moment functional L are by def-
inition the numbers determined by Eq. (A3). In the
present case of a finite OPS,

µk =

∫ ∞

−∞

Ek dν(E) =

N−1∑
l=0

wl E
k
l , k ∈ N. (13)

Because wk > 0, all the moments are real (and positive
if all eigenvalues are positive). From (13) we see that the
modulus of the k-th moment µk diverges like the k-th
power of a constant [2].

E. Uniqueness of dνP (E) = w(E)dE

In virtue of that νP (E) of Eq. (10) is a non-decreasing
function of bounded variation, νP (E) defines a distribu-

tion function (cf. Definition II-1.1 of of Ref. [1]). This
distribution function is unique (up to an additive con-
stant), so that the moment problem associated to the
weakly orthogonal polynomial system {Pk}k∈N, or a fi-

nite OPS {Pk}
N−1
k=1 , is always determined. Essentially,

this is due to the fact that the spectrum

S(νP ) = {x ∈ R : νP (x+ δ)− νP (x− δ) > 0, ∀δ > 0}

of the distribution function νP is the finite set {El}
N−1
l=0

determined by the zeros of PN (x).

According to a well known result in the classical the-
ory of orthogonal polynomials [1], a distribution function
ν defines a positive-definite functional on C[E] through
integration with respect to the Stieltjes measure dν(E)
if and only if the spectrum of ν is infinite. Since L is not
positive-definite [L(P 2

N ) = nN = 0], any solution ν of (4)
must have a finite spectrum, and will thus be of the form

ν̂(E) =
ñ∑

k=0

w̃kθ(E − Ẽk) + C

for some constant C, up to an irrelevant redefinition of ν
inS(ν). If I is a compact interval containingS(ν)∪S(ν̂),
then ∀p ∈ C[E]

L(p) =

∫
I

p(E) dν̂(E) =

∫
I

p(E) dν(E).

Following the arguments of Finkel et al [2], since I is
compact, a well known theorem (cf. Theorem II-5.7 of
Ref. [1]) shows that ν̂ and ν may only differ by a constant
at all points in which both ν̂ and ν are continuous. But
this easily implies that Ek = Ẽk and wk = w̃k for k =
0, 1, . . . , ñ = N − 1, whence ν = ν̂ + C, as stated. The
same argument shows that the moment problem in any
interval containing [E0, EN−1], in particular, the Stieltjes
moment problem in [E0,∞) is also determined.

II. BASIC PROPERTIES OF A GENERAL

FINITE TRIDIAGONAL MATRIX J

It is expedient to see how finite OPS are linked to
the properties of a general finite tridiagonal matrix J .
Consider N × N tridiagonal matrix J which acts on a
basis ek, 0 ≤ k ≤ N − 1 by

Jek = C(k + 1)ek+1 +B(k)ek +A(k − 1)ek−1.

We will assume the irreducibility condition

C(s)A(s − 1) 6= 0 (14)
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for 1 ≤ s ≤ N − 1 together with C(N) = A(−1) = 0,
which means merely that that the matrix J acts in linear
space of dimension N .
Following the arguments by Vinet and Zhedanov [5],

find the eigenvectors v(k), 0 ≤ k ≤ N − 1, of the matrix
J , i.e.

Jv(k) = Ekv
(k),

with some eigenvalues Ek. We assume that all eigenval-
ues are distinct: Ej 6= Ek if j 6= k. Then all vectors

v
(k), 0 ≤ k ≤ N − 1, are independent and we have

v
(k) =

N−1∑
s=0

vkses,

where vks, 0 ≤ s ≤ N − 1, are components of the vector
v
(k) in the basis es. For the components we have relation

[5]

A(s)vk,s+1 +B(s)vks + C(s)vk,s−1 = Ekvks. (15)

Now we can identify components vks with Ps(E), i.e. we
merely put vks = Ps(Ek) for all values 0 ≤ k, s ≤ N − 1.
Eq. (15) is a TTRR in the s-variable. Therefore it defines

a finite OPS {Ps}
N−1
s=0 .

Consider transposed Jacobi matrix J∗ defined as

J∗
ek = A(k)ek+1 +B(k)ek + C(k)ek−1

and corresponding eigenvalue vectors v∗(k),

J∗
v
∗(k) = Ek v

∗(k), 0 ≤ k ≤ N − 1.

The eigenvectors v∗(k) can be expanded in terms of the
same basis es:

v
∗(k) =

N−1∑
s=0

v∗kses.

From elementary linear algebra it is known that in non-

degenerate case (i.e. if Ei 6= Ej for i 6= j) the eigenvectors

v
k and v

∗(j) are biorthogonal:

(vk,v∗(j)) ≡
N−1∑
s=0

vksv
∗
js = 0 if k 6= j. (16)

(The biorthogonality property is valid for any non-
symmetric matrix having all distinct eigenvalues.)
Introduce now the diagonal matrix M which acts on

basis es as

Mes = µses, 0 ≤ s ≤ N − 1,

where

µ0 = 1, µs =
A(0)A(1) . . . A(s− 1)

C(1)C(2) . . . C(s)
, 1 ≤ s ≤ N − 1.

Note that all µs are well defined due to irreducibility
condition (14). It is elementary verified that

J∗ = M−1JM,

and hence

v
∗(k) = M−1

v
(k), 0 ≤ k ≤ N − 1 (17)

(inverse matrix M−1 exists due to the irreducibility con-
dition (14)).

Relation (17) allows one to rewrite biorthogonality
condition (16) in the form

N−1∑
s=0

wsvksvjs = 0 if k 6= j,

where

ws = µ−1
s =

s∏
i=1

C(i)

A(i− 1)
· (18)

In terms of Pn(x) this relation becomes (cf. Eq. (5.8) of
Krajewska et al [4])

N−1∑
s=0

wsPs(Ej)Ps(Ek) = 0 if k 6= j. (19)

In the symmetric Haydock’s case Eq. (18) reduces to

ws =

s∏
i=1

bi

bi
≡ 1.

Eq. (19) of Ref. [5] then becomes essentially the dual

orthogonality relation (10.18) of Haydock [6]

N−1∑
s=0

ps(Ek)ps(Ej) = δEE′ ,

where Ek and Ej are both eigenvalues.
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