On-line supplementary material to Haydock's recursive solution of self-adjoint problems. Discrete spectrum

Alexander Moroz Wave-scattering.com

The aim of the supplementary information is to supply some of intermediary steps skipped over in the main text. Equations of the main text are referred to with a number preceded by M.

I. FINITE OPS

An infinite sequence of polynomials defined by a TTRR (M6) in the case when some of the coefficients $\{\lambda_k\}$ equals zero (e.g. $\lambda_{\mathcal{N}} = 0$) is called *weakly* orthogonal polynomial system (see p. 23 of Ref. [1] or Ref. [2]). The present work suggests that it is more appropriate to view such a *weakly* orthogonal polynomial system as composed of (at least) two independent parts:

- a (at least one) finite sequence of polynomials defined by a TTRR (M6) with $\lambda_k > 0$ for $k < \mathcal{N}$
- an *infinite* orthogonal polynomial sequence of quotient polynomials $\{Q_k\}$ defined by a suitably modified TTRR (M6)

and to focus on each of the parts independently. Since the latter is well described, we summarize here some of the elementary results for the *finite* orthogonal polynomial sequences $\{P_k\}_{k=1}^{\mathcal{N}-1}$. The main focus is on the case when $\{c_n\}$ in a TTRR (M6) are *real* numbers.

A. Simplicity of zeros of $\{P_k\}_{k=1}^{\mathcal{N}-1}$

If the coefficients $\lambda_k > 0$ for all $k \in \mathbb{N}$ in a TTRR (M6) then the zeros of the polynomials P_k satisfying the TTRR (M6) are real and simple (Theorem I-5.2 of Ref. [1]). However, in our case $\lambda_{\mathcal{N}} = 0$ and the classical results obtained for the OPS [1] no longer apply. Nevertheless, one can prove that the zeros of the polynomials of a *finite* orthogonal polynomial sequence $\{P_k\}_{k=1}^{\mathcal{N}-1}$ satisfying a TTRR (M6) with the coefficients $\lambda_k > 0$ for all $k < \mathcal{N}$ are still *real* and *simple*.

Before proceeding any further, let us recall Favard's theorem (Theorem I-4.4 of Ref. [1]). The theorem says that for given arbitrary sequences of complex numbers $\{c_n\}$ and $\{\lambda_n\}$ in the TTRR (M6) there always exists a moment functional, that is a linear functional \mathcal{L} acting in the space of (complex) monic polynomials $\mathbb{C}[E]$, such that the polynomials P_n defined by the TTRR (M6) are orthogonal under \mathcal{L} :

$$\mathcal{L}(P_k P_l) = 0, \qquad k \neq l \in \mathbb{N}. \tag{1}$$

The functional \mathcal{L} is *unique* if we impose the normalization condition $\mathcal{L}(P_0) = \mathcal{L}(1) = \mu_0$, where μ_0 is a chosen positive constant. The coefficient $\mathfrak{n}_k = \mathcal{L}(P_k^2)$ is the square of the norm of P_k that is given by Eq. (B3). The latter implies the property of the *weakly* orthogonal polynomial system that $\mathfrak{n}_k = 0, k \geq \mathcal{N}$, so that all the polynomials P_k with $k \geq \mathcal{N}$ have zero norm. From Eq. (B3) it also follows that the squared norms \mathfrak{n}_k will be positive for $k < \mathcal{N}$ if and only if $\lambda_k > 0$ for $1 \leq k < \mathcal{N}$.

The following simple lemma obtained by Finkel et al. (cf. Lemma 3 of Ref. [2]) is of paramount importance for us:

Let \mathcal{P}_n be the space of *real* polynomials of degree at most n in z. If $\lambda_k > 0$ for k = 1, 2, ..., n and c_k is real for k = 0, 1, ..., n in a TTRR (M6), then \mathcal{L} is *positive*definite on \mathcal{P}_{2n} . In other words, if $p \in \mathcal{P}_{2n}$ is a real polynomial of degree at most $2n, p \neq 0$ and $p(E) \geq 0$ for all $E \in \mathbb{R}$ then $\mathcal{L}(p) > 0$.

Now, given that \mathcal{L} is *positive-definite* on \mathcal{P}_{2n} , Theorem I-5.2 of Ref. [1], i.e. the theorem that guarantees simplicity of zeros of an infinite OPS, can easily be extended to the case of *finite* OPS. Indeed, all what the proof of Theorem I-5.2 of Ref. [1] requires is that (cf. Theorem I-2.1 of Ref. [1])

- $\mathcal{L}[\pi(x)P_l(x)] = 0$ [cf. Eq. (B1)] holds for every polynomial $\pi(x)$ of degree $k < l \leq n$
- $\mathcal{L}[x^k P_k(x)] > 0$ for $k \le n$.

However the above conditions have been for $k < \mathcal{N}$ both guaranteed by Favard's theorem (Theorem I-4.4 of Ref. [1]). Thus we have the following result:

If we have a TTRR (M6) with $\lambda_k > 0$ and c_k real for $k = 0, 1, \ldots, \mathcal{N} - 1$, then the polynomials of the resulting *finite* orthogonal polynomial sequence $\{P_k\}_{k=1}^{\mathcal{N}-1}$ have *real* and *simple* zeros.

Surprisingly enough, the above result has been overlooked by Finkel et al [2]. They needed an extra assumption of the Hamiltonian H being fully algebraic to prove the simplicity of zeros (cf. arguments above their Eq. (47)).

B. Interlacing property of zeros of $\{P_k\}_{k=1}^{\mathcal{N}}$

Interlacing property of zeros of an infinite OPS follows from the identity (Eq. (I-4.13) of Ref. [1])

$$P'_{n}(x)P_{n-1}(x) - P_{n}(x)P'_{n-1}(x) > 0, \qquad (2)$$

which is valid for a *positive-definite* \mathcal{L} . The identity is obtained as a limiting case of the *Christoffel-Darboux* identity (Theorem I-4.5 of Ref. [1])

$$\sum_{l=0}^{n-1} \frac{P_l(x)P_l(u)}{\mathfrak{n}_l} = \frac{1}{\mathfrak{n}_{n-1}} \frac{P_n(x)P_{n-1}(u) - P_n(u)P_{n-1}(x)}{x-u}.$$
(3)

Identity (2) combined with the simplicity of zeros is all what is needed to prove the so-called *separation* theorem for polynomial zeros (cf. Theorem I-5.3 of Ref. [1]). In the case of a *finite* OPS we need its validity only up to some critical value of $n = \mathcal{N}$. But the latter is obvious as the Christoffel-Darboux identity is a direct consequence of a TTRR (M6) with $\lambda_l > 0$, and hence $\mathfrak{n}_l > 0$, for $l < \mathcal{N}$.

Now one can prove that the zeros of $P_{\mathcal{N}}$ have to interlace the zeros of $P_{\mathcal{N}-1}$ even if the norm of $P_{\mathcal{N}}$ is zero. First, in contrast to $p_{\mathcal{N}}$ and the TTRR (M5), $P_{\mathcal{N}}$ is well defined by the TTRR (M6). Second, identity (2) requires the TTRR (M6) to be valid only up to $n = \mathcal{N} - 1$, which is the case. The interlacing of the zeros of $P_{\mathcal{N}-1}$ and $P_{\mathcal{N}}$ then follows from the identity (2) for $n = \mathcal{N}$. Indeed, one has (Eq. (I-5.3) of Ref. [1])

$$\operatorname{sgn} P'_n(x_{nk}) = (-1)^{n-k}, \qquad k \le n < \mathcal{N}.$$

On substituting into Eq. (2) for $n = \mathcal{N}$ and $x = x_{\mathcal{N}-1,k}$,

$$-P_{\mathcal{N}}(x_{\mathcal{N}-1,k})P'_{\mathcal{N}-1}(x_{\mathcal{N}-1,k}) > 0,$$

one finds

$$\operatorname{sgn} P_{\mathcal{N}}(x_{\mathcal{N}-1,k}) = (-1)^{\mathcal{N}-k}.$$

Hence between any two subsequent zeros of $P_{\mathcal{N}-1}$ the polynomial $P_{\mathcal{N}}$ changes its sign. Given that $P_{\mathcal{N}}$ is monic, for sufficiently large $x > x_{\mathcal{N}-1,\mathcal{N}-1}$ one would have $\operatorname{sgn} P_{\mathcal{N}}(x) = 1$ and $P_{\mathcal{N}}(x)$ will also change sign once for $x > x_{\mathcal{N}-1,\mathcal{N}-1}$. Because $P_{\mathcal{N}}$ cannot have more than \mathcal{N} zeros, all zeros of $P_{\mathcal{N}}$ have to be simple.

Thus there is no typing error in the headings of the last two subsections. Sec. IA establishes simplicity of zeros of $\{P_k\}_{k=1}^{\mathcal{N}-1}$ resulting from the *positive-definiteness* of \mathcal{L} on \mathcal{P}_{2n} . Sec. IB adds $P_{\mathcal{N}}$ to the earlier set thanks to the *Christoffel-Darboux* identity (3).

We have seen that the normalized $p_{\mathcal{N}}$ is not defined because of $\mathfrak{n}_{\mathcal{N}} \equiv 0$. This prohibits among others arriving at (B4) from (M6). Nevertheless, with monic not normalized $P_{\mathcal{N}}$ being well defined by the TTRR (M6), the latter provides a justification for considering the zeros of the l.h.s. of Eq. (M7) as the zeros of $P_{\mathcal{N}}$.

C. Explicit expression for $d\nu_P(E) = w(E)dE$

It is known from *Boas*'s theorem [3] (Theorems II-6.3-4 of Ref. [1]) that there is a (not necessarily unique)

function of bounded variation ν such that

$$\mathcal{L}(p) = \int_{-\infty}^{\infty} p(E) \, d\nu(E) \tag{4}$$

for an arbitrary polynomial p. Orthogonality relations (M3) can be then expressed as

$$\mathcal{L}(p_n) := \int p_n(E) d\nu_P(E) = \delta_{n0}.$$
 (5)

An integral equation for w(E) in $d\nu_P(E) = w(E)dE$ is obtained as follows [2, 4]. Multiplying relation (M2) by $d\nu_P(E)$, taking the integral over E and using (5), one obtains for an arbitrary eigenvector $|E\rangle \in \mathcal{V}_N$ of the Hamiltonian H

$$\int |E\rangle \, d\nu_P(E) = \mathbf{e}_0. \tag{6}$$

The basis element \mathbf{e}_0 , or the *cyclic* vector of H, can be obviously represented as a linear combination of eigenvectors of the Hamiltonian H corresponding to exactly calculable energy levels in $\mathcal{V}_{\mathcal{N}}$, or to the zeros of $P_{\mathcal{N}}(x)$,

$$\mathbf{e}_0 = \sum_{k=0}^{\mathcal{N}-1} w_k |E_k\rangle. \tag{7}$$

Substituting (7) into (6) one obtains with $d\nu_P(E) = w(E)dE$

$$\int |E\rangle w(E)dE = \sum_{k=0}^{\mathcal{N}-1} w_k |E_k\rangle.$$
(8)

This is equation first obtained by Krajewska, Ushveridze, and Walczak [4] and later rigorously analyzed by Finkel et al [2].

It was heuristically argued by Krajewska et al [4] that w(E) solving Eq. (8) is given by (cf. Eq. (5.6) of Ref. [4]; Eq. (49) of Ref. [2])

$$w(E) = \sum_{k=0}^{N-1} w_k \,\delta(E - E_k).$$
 (9)

Indeed, the *discrete* Stieltjes measure $d\nu_P(E)$ defined by the function

$$\nu_P(E) = \sum_{k=0}^{N-1} w_k \,\theta(E - E_k),$$
(10)

where $\theta(x)$ is Heaviside's step function, obviously satisfies (8).

The coefficients w_k can be found by solving a finite non-degenerate system of linear equations (cf. Eq. (5.8) of Ref. [4]; Eq. (50) of Ref. [2])

$$\sum_{l=0}^{\mathcal{N}-1} p_k(E_l) w_l = \delta_{k0}, \qquad k = 0, 1, \dots, \mathcal{N} - 1.$$
 (11)

Because the matrix M with elements $M_{kl} := p_k(E_l)$ has orthogonal rows, the linear system (11) of \mathcal{N} equations for \mathcal{N} unknowns *uniquely* determines the \mathcal{N} constants w_k defined by Eq. (7) [2, 4]. The coefficients w_k are in fact *positive* (cf. Sec. ID). This makes $\nu_P(E)$ a *nondecreasing* function of bounded variation.

It is not difficult to show that the orthogonality relations (1) are satisfied. Indeed, by the uniqueness of \mathcal{L} this is equivalent to showing that \mathcal{L} given through $\nu_P(E)$ of Eq. (10) satisfies the orthogonality relations (1) for $k, l < \mathcal{N}$. From the linear system (11) which determines w_k , and which derives from Eq. (5), we deduce that

$$\mathcal{L}(p_l) = \delta_{0l}, \qquad 0 \le l < \mathcal{N}. \tag{12}$$

The remaining orthogonality relations (1) then follows inductively on applying the above relations (12) to the TTRR (M5), and then continuing similarly as in the proof of *Favard*'s theorem (Theorem I-4.4 of Ref. [1]).

D. Positivity of the coefficients w_k

The positivity of the coefficients w_k is obvious in Haydock's approach, because w(E) corresponds to the local DOS $n_0(E)$. Nevertheless it is instructive to have its independent mathematical proof, which in a general setting of finite OPS was essentially provided by Finkel et al (cf. Proposition 4 of Ref. [2]). In brief, all the coefficients w_k in Eqs. (7), (9) and (10) are positive, $w_k > 0$, for $0 \le k < \mathcal{N}$ if c_k is real for all $0 \le k < \mathcal{N}$ and $\lambda_k > 0$ for $1 \le k < \mathcal{N}$ in the TTRR (M6).

Proof. From Lemma 3 of Finkel et al [2] we know that \mathcal{L} is *positive-definite* on $\mathcal{P}_{2(\mathcal{N}-1)}$. Apply the lemma to the polynomials $\prod_{0 \leq j \neq k < \mathcal{N}-1} (E - E_j)^2 \in \mathcal{P}_{2(\mathcal{N}-1)}$ for $k = 0, 1, \ldots, \mathcal{N} - 1$. Then, with the moment functional (9), one has

$$\mathcal{L}(p) = w_k \prod_{0 \le j \ne k < \mathcal{N} - 1} (E_k - E_j)^2 > 0$$

from which it follows that necessarily $w_k > 0$ for all $k = 0, 1, \ldots, N - 1$.

The *moments* of the moment functional \mathcal{L} are by definition the numbers determined by Eq. (A3). In the present case of a finite OPS,

$$\mu_k = \int_{-\infty}^{\infty} E^k \, d\nu(E) = \sum_{l=0}^{\mathcal{N}-1} w_l \, E_l^k, \qquad k \in \mathbb{N}.$$
(13)

Because $w_k > 0$, all the moments are *real* (and positive if all eigenvalues are positive). From (13) we see that the modulus of the k-th moment μ_k diverges like the k-th power of a constant [2].

In virtue of that $\nu_P(E)$ of Eq. (10) is a non-decreasing function of bounded variation, $\nu_P(E)$ defines a *distribution function* (cf. Definition II-1.1 of of Ref. [1]). This distribution function is unique (up to an additive constant), so that the moment problem associated to the weakly orthogonal polynomial system $\{P_k\}_{k\in\mathbb{N}}$, or a finite OPS $\{P_k\}_{k=1}^{N-1}$, is always *determined*. Essentially, this is due to the fact that the *spectrum*

Uniqueness of $d\nu_P(E) = w(E)dE$

Е.

$$\mathfrak{S}(\nu_P) = \{ x \in \mathbb{R} : \nu_P(x+\delta) - \nu_P(x-\delta) > 0, \ \forall \delta > 0 \}$$

of the distribution function ν_P is the *finite* set $\{E_l\}_{l=0}^{N-1}$ determined by the zeros of $P_N(x)$.

According to a well known result in the classical theory of orthogonal polynomials [1], a distribution function ν defines a positive-definite functional on $\mathbb{C}[E]$ through integration with respect to the Stieltjes measure $d\nu(E)$ if and only if the spectrum of ν is *infinite*. Since \mathcal{L} is not positive-definite $[\mathcal{L}(P_{\mathcal{N}}^2) = \mathfrak{n}_{\mathcal{N}} = 0]$, any solution ν of (4) must have a *finite* spectrum, and will thus be of the form

$$\hat{\nu}(E) = \sum_{k=0}^{\bar{n}} \tilde{w}_k \theta(E - \tilde{E}_k) + C$$

for some constant C, up to an irrelevant redefinition of ν in $\mathfrak{S}(\nu)$. If I is a compact interval containing $\mathfrak{S}(\nu) \cup \mathfrak{S}(\hat{\nu})$, then $\forall p \in \mathbb{C}[E]$

$$\mathcal{L}(p) = \int_{I} p(E) \, d\hat{\nu}(E) = \int_{I} p(E) \, d\nu(E).$$

Following the arguments of Finkel et al [2], since I is compact, a well known theorem (cf. Theorem II-5.7 of Ref. [1]) shows that $\hat{\nu}$ and ν may only differ by a constant at all points in which both $\hat{\nu}$ and ν are continuous. But this easily implies that $E_k = \tilde{E}_k$ and $w_k = \tilde{w}_k$ for k = $0, 1, \ldots, \tilde{n} = \mathcal{N} - 1$, whence $\nu = \hat{\nu} + C$, as stated. The same argument shows that the moment problem in any interval containing $[E_0, E_{\mathcal{N}-1}]$, in particular, the Stieltjes moment problem in $[E_0, \infty)$ is also determined.

II. BASIC PROPERTIES OF A GENERAL FINITE TRIDIAGONAL MATRIX J

It is expedient to see how finite OPS are linked to the properties of a general finite tridiagonal matrix J. Consider $N \times N$ tridiagonal matrix J which acts on a basis \mathbf{e}_k , $0 \le k \le N - 1$ by

$$J\mathbf{e}_k = C(k+1)\mathbf{e}_{k+1} + B(k)\mathbf{e}_k + A(k-1)\mathbf{e}_{k-1}.$$

We will assume the *irreducibility* condition

$$C(s)A(s-1) \neq 0 \tag{14}$$

for $1 \leq s \leq N-1$ together with C(N) = A(-1) = 0, which means merely that that the matrix J acts in linear space of dimension N.

Following the arguments by Vinet and Zhedanov [5], find the eigenvectors $\mathbf{v}^{(k)}, 0 \leq k \leq N-1$, of the matrix J, i.e.

$$J\mathbf{v}^{(k)} = E_k \mathbf{v}^{(k)},$$

with some eigenvalues E_k . We assume that all eigenvalues are distinct: $E_j \neq E_k$ if $j \neq k$. Then all vectors $\mathbf{v}^{(k)}$, $0 \leq k \leq N-1$, are independent and we have

$$\mathbf{v}^{(k)} = \sum_{s=0}^{N-1} v_{ks} \mathbf{e}_s$$

where $v_{ks}, 0 \leq s \leq N-1$, are components of the vector $\mathbf{v}^{(k)}$ in the basis \mathbf{e}_s . For the components we have relation [5]

$$A(s)v_{k,s+1} + B(s)v_{ks} + C(s)v_{k,s-1} = E_k v_{ks}.$$
 (15)

Now we can identify components v_{ks} with $P_s(E_)$, i.e. we merely put $v_{ks} = P_s(E_k)$ for all values $0 \le k, s \le N-1$. Eq. (15) is a TTRR in the *s*-variable. Therefore it defines a finite OPS $\{P_s\}_{s=0}^{N-1}$.

Consider *transposed* Jacobi matrix J^* defined as

$$J^*\mathbf{e}_k = A(k)\mathbf{e}_{k+1} + B(k)\mathbf{e}_k + C(k)\mathbf{e}_{k-1}$$

and corresponding eigenvalue vectors $\mathbf{v}^{*(k)}$,

$$J^* \mathbf{v}^{*(k)} = E_k \, \mathbf{v}^{*(k)}, \quad 0 \le k \le N - 1.$$

The eigenvectors $\mathbf{v}^{*(k)}$ can be expanded in terms of the same basis \mathbf{e}_s :

$$\mathbf{v}^{*(k)} = \sum_{s=0}^{N-1} v_{ks}^* \mathbf{e}_s$$

From elementary linear algebra it is known that in *non*degenerate case (i.e. if $E_i \neq E_j$ for $i \neq j$) the eigenvectors \mathbf{v}^k and $\mathbf{v}^{*(j)}$ are biorthogonal:

$$(\mathbf{v}^k, \mathbf{v}^{*(j)}) \equiv \sum_{s=0}^{N-1} v_{ks} v_{js}^* = 0 \text{ if } k \neq j.$$
 (16)

(The biorthogonality property is valid for any nonsymmetric matrix having all distinct eigenvalues.)

Introduce now the *diagonal* matrix M which acts on

basis \mathbf{e}_s as

$$M\mathbf{e}_s = \mu_s \mathbf{e}_s, \quad 0 \le s \le N-1$$

where

$$\mu_0 = 1, \quad \mu_s = \frac{A(0)A(1)\dots A(s-1)}{C(1)C(2)\dots C(s)}, \ 1 \le s \le N-1.$$

Note that all μ_s are well defined due to irreducibility condition (14). It is elementary verified that

$$J^* = M^{-1}JM,$$

and hence

$$\mathbf{v}^{*(k)} = M^{-1} \mathbf{v}^{(k)}, \quad 0 \le k \le N - 1$$
 (17)

(inverse matrix M^{-1} exists due to the irreducibility condition (14)).

Relation (17) allows one to rewrite biorthogonality condition (16) in the form

$$\sum_{s=0}^{N-1} w_s v_{ks} v_{js} = 0 \quad \text{if} \quad k \neq j.$$

where

$$w_s = \mu_s^{-1} = \prod_{i=1}^s \frac{C(i)}{A(i-1)}.$$
 (18)

In terms of $P_n(x)$ this relation becomes (cf. Eq. (5.8) of Krajewska et al [4])

$$\sum_{s=0}^{N-1} w_s P_s(E_j) P_s(E_k) = 0 \quad \text{if} \quad k \neq j.$$
 (19)

In the symmetric Haydock's case Eq. (18) reduces to

$$w_s = \prod_{i=1}^s \frac{b_i}{b_i} \equiv 1.$$

Eq. (19) of Ref. [5] then becomes essentially the *dual* orthogonality relation (10.18) of Haydock [6]

$$\sum_{s=0}^{N-1} p_s(E_k) p_s(E_j) = \delta_{EE'},$$

where E_k and E_j are both eigenvalues.

- T. S. Chihara, An Introduction to Orthogonal Polynomials (Gordon and Breach, New York, 1978).
- [2] F. Finkel, A. González-López, and M. A. Rodríguez, Quasi-exactly solvable potentials on the line and ortho-

gonal polynomials, J. Math. Phys. 37, 3954-3972 (1996).

[3] R. P. Boas, Jr., The Stieltjes moment problem for functions of bounded variation, Bull. Amer. Math. Soc. 45, 399-404 (1939). [5] L. Vinet and A. Zhedanov, Generalized Bochner theorem: Characterization of the Askey-Wilson polynomials J. Comput. Appl. Math. **211**, 45-56 (2008).

[6] R. Haydock, The recursive solution of the Schrödinger equation, in: H. Ehrenreich, F. Seitz, D. Turnbull (Eds.), Solid State Physics vol. 35, Academic Press, New York, 1980, pp. 215-294.