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1 Introduction

Let Λ be a two-dimensional (2D) simple (Bravais) periodic lattice in three dimensions (3D) (the condition

of a simple lattice can be relaxed to an arbitrary periodic lattice [4, 5]). Let Λ∗ be the corresponding

dual (momentum) lattice, i.e., for any rn ∈ Λ and ks ∈ Λ∗ one has rn · ks = 2πN , where N is an integer.

Let k‖ be the projection of wavevector k of an incident monochromatic wave onto Λ (Λ∗). Let

G0(σ, r, r
′) = G0(σ,R) = −exp(iσR)

4πR
, (1)

where R = r−r′ and R = |R|, denote a free-space scattering Green’s function of the 3D scalar Helmholtz

equation at the points r and r′ and at σ = ωnh/c0, where ω is angular frequency, nh is the host refractive

index, and c0 is the speed of light in vacuum. The free-space periodic Green’s function G0Λ is defined as

G0Λ(σ,k‖,R) =
∑

rs∈Λ

G0(σ,R − rs)e
ik‖·rs =

∑

rs∈Λ

G0(σ,R + rs)e
−ik‖·rs , (2)

where the projection k‖ is usually called the Bloch momentum. For any rs ∈ Λ, ks ∈ Λ∗, G0Λ satisfies

the following trivial properties, G0Λ(σ,k‖,R) = G0Λ(σ,k‖,R + rs) = G0Λ(σ,k‖ + ks,R).

In a recent article by Guérin, Enoch, and Tayeb [1], the performances of several methods used for

the computation of the free-space doubly-periodic Green’s function G0Λ of the 3D scalar Helmholtz wave

equation [Eq. (12) below] were investigated. It was stated that (i) only a few works concern this problem,

(ii) for a large range of parameters (position in space, wavelength, periods, etc.), none of the methods is

satisfactory, regarding accuracy and computing time criteria. Contrary to these claims, we would like to

point out that there is a whole thriving industry of numerical techniques which efficiently and satisfactorily

deal with the issue raised in [1] and which are based on a method superior to those discussed by Guérin,

Enoch, and Tayeb [1]. The alternative method is based on the (complete) Ewald summation [2, 3] and

yields an exponentially convergent representations of G0Λ and its lattice sums. These representations

were first derived by Kambe as early as in 1967 [2, 3].

2 Kambe’s formulas for lattice sums

The lattice sums Dlm of G0Λ are defined as the expansion coefficients of

DΛ(σ,k‖,R) ≡ G0Λ(σ,k‖,R) −Gp
0(σ,R) (3)

into regular spherical waves [3, 6],

DΛ(σ,k‖,R) =
∑

lm

Dlm(σ,k‖)jl(σR)Ylm(R). (4)
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Here l ≥ 0 and −l ≤ m ≤ l are the angular-momentum numbers, Gp
0 = − cos(σR)/(4πR) denotes the

real or principal (singular) part of the free-space Green’s function G0, jl are the regular spherical Bessel

functions [7], and Ylm are the conventional spherical harmonics. The very possibility of the expansion

(4) follows from the fact that DΛ is regular for R → 0 [6]. Indeed, within a primitive cell of a lattice Λ,

Green’s functions G0 and G0Λ only differ up to boundary conditions and their respective singular parts

are identical [6]. Therefore, DΛ is regular for R → 0 and as such it can be expanded in terms of the

regular spherical waves [6]. The lattice sums are conventionally written as a sum [3]

Dlm = D
(1)
lm +D

(2)
lm +D

(3)
lm , (5)

where D
(1)
lm (D

(2)
lm ) involves a sum over Λ∗ (all rs 6= 0 of Λ). D

(3)
lm is the term which combines Gp

0(R) and

the rs = 0 contribution of the direct lattice sum, and is only nonzero for l = m = 0 [3]. Explicitly,

D
(1)
lm = − 1

σv0

i−m+1

2l
[(2l + 1)(l + |m|)!(l − |m|)!]1/2

∑

ks∈Λ∗

e
−imφk‖+ks

×
(l−|m|)/2

∑

n=0

Γ

(

1/2− n, e−πiK
2
⊥sη

2

)

[|k‖ + ks|/σ]l−2n[K⊥s/σ]2n−1

n![(l − |m|)/2− n]![(l + |m|)/2− n]!
, (6)

D
(2)
lm = − σ

4π

(−1)l+(l+m)/2

22l

[(2l + 1)(l − |m|)!(l + |m|)!]1/2

[(l − |m|)/2]![(l + |m|)/2]!

×
∑

rs∈Λ

′

e−ik‖·rs−imφrs (σrs)
l

∫ σ2η/2

0

u−l−3/2 exp

[

u− σ2r2s
4u

]

du, (7)

where prime in
∑ ′

indicates that the term with rs = 0 is omitted, and

D
(3)
lm = − σ

2π

∞
∑

n=0

(σ2η/2)n−1/2

n!(2n− 1)
δlm,00. (8)

Here, v0 is the volume of the primitive cell of the direct lattice Λ, φu is the polar angle of the vector u

in the plane containing Λ (Λ∗), Γ is the incomplete gamma function [7], the normal projection K⊥s can

be either real (a propagating wave) or imaginary (an evanescent wave),

K⊥s =

{

[

σ2 − |k‖ + ks|2
]1/2

, σ > |k‖ + ks|
i
[

|k‖ + ks|2 − σ2
]1/2

, σ < |k‖ + ks|,
(9)

and δlm,l′m′ is the Kronecker delta function, which is equal to one for (l,m) = (l′,m′) and otherwise is

zero. The parameter η in Eqs. (6)-(8) is the so-called Ewald parameter [3]. Invariance of Dlm [Eq. (5)]

on the value of the Ewald parameter η serves as a check of a correct numerical implementation. However,

for some values of η, one can enter a numerically instable region: the D
(1)
lm and D

(2)
lm contributions have

opposite sign and similar magnitude, which is several orders larger than the resultantDlm. This instability
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can easily be remedied by choice of some other value of η, or, one can make η depend on σ and l and

prevent numerical instability completely [8, 9]. For moderate values of σ, Kambe recommended [3]

η =
v0
2π

· (10)

A numerical implementation of Eqs. (6)-(8) is facilitated by the fact that, assuming standard spherical

coordinates, for a lattice Λ embedded in the z = 0 plane, the lattice sums are only nonzero if l − |m| is

even, i.e.,

D
(j)
lm ≡ 0, l − |m| odd. (11)

Therefore, (l − |m|)/2, which is the upper limit of a sum over integers in Eq. (6) and which also enters

factorials and an exponent in Eqs. (6)-(7), is always an integer. Obviously, whenever Dlm 6= 0 then

(l + |m|)/2 in Eqs. (6)-(7) is also an integer. Some other tricks facilitating numerical implementation,

for instance, use of recurrence relations, are discussed in [3]. Corresponding lattice sums and G0Λ for a

complex (non-Bravais) lattice (for instance, a diamond lattice) are calculated in [5].

3 Discussion

The exponentially convergent representation of the lattice sums, given in Eqs. (6)-(8), was first derived by

Kambe in 1967 [3]. Since then it became an integral and indispensable part of numerical programs based

on the layer Korringa-Kohn-Rostocker (LKKR) method [10, 11, 12, 13, 14, 15, 16, 17] and low-energy

electron-diffraction (LEED) theory [12, 13, 18] which describe scattering and diffraction of quantum and

classical waves off (a finite stack of) 2D lattice(s) in 3D. The LKKR and LEED based numerical programs

have been successfully tested for various physical problems since the early seventies of the last century.

The last decade they have been incorporated into acoustic, elastic, and electromagnetic variants of the

LKKR theories [14, 15, 16, 17]. Indeed, it is interesting to note that, to a large extent, the scalar case

also covers the case of vector and tensorial waves, provided (such as in the case of acoustic, elastic, and

electromagnetic waves) each field component ψj independently obeys the scalar Helmholtz equation,

[∆ + σ2]ψj = 0. (12)

For several reasons, it has been rather surprising to find out that the Kambe’s results (6)-(8) were

not included in the analysis of Ref. [1]. First, given σ and k‖, an identical set of lattice sums is used in

Eq. (4) to calculate [Eqs. (3)-(4)] the Green’s function G0Λ anywhere, i.e., also in the lattice (z = 0)

plane, as long as r 6= r′ (R 6= 0). (Note that in lattice plane, i.e. for z = 0, the series in Ref. [1] are only
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conditionally convergent and their convergence properties were only investigated in the region |z| ≥ 10−6.)

Second, there is no problem to calculate G0Λ close to machine accuracy. Third, compared to variants

of the spectral domain representation of G0Λ discussed in [1], Kambe’s expressions (6)-(8) provide an

unparallel speed of convergence for G0Λ. Indeed, after initial calculation of the lattice sums Dlm up to

a cutoff value lmax, any further evaluation of G0Λ for a given σ and k‖ only requires a straightforward

evaluation of regular Bessel functions and spherical harmonics, and performing the sum in Eq. (4) with

the same set of the Dlm’s. Let the respective T1 and T10000 denote the time needed to calculate G0Λ at

a single and at 10.000 points. For fixed σ = 2π and k‖ = (σ sin(π/4), 0) (the same parameters as in Ref.

[1]), the convergence times T1 and T10000 are summarized in Table I as a function of lmax. The lattice

sums were calculated with 8 digits accuracy. The Ewald parameter was taken according to Eq. (10). F77

program was compiled without any optimalization and run on a standard PC with Pentium II processor.

Bessel functions and spherical harmonics were calculated using routines from Numerical Recipies [22].

The number of lattice sums increases quadratically with a cutoff value lmax in the summation over l

and m in Eq. (4): for a given lmax, there are (lmax + 1)× (lmax + 2)/2 independent lattice sums [see the

constraint (11)] [12]. Therefore, both T1 and T10000 increase with lmax. The speed of convergence of the

Ewald-Kambe summation shown in Table I is in line with the so-called bulk case (d-dimensional lattice

in a d-dimensional space). A single run of an entire photonic KKR program [19], which performs many

other functions apart from a calculation of the lattice sums with 6 digits accuracy, takes on a PC with

Pentium II processor, ≈ 0.03s for a 2D photonic crystal in 2D for lmax = 22 [20] and ≈ 0.8s for a 3D

photonic crystal in 3D for lmax = 8 [21]. Given R and s = σ|R|, G0Λ is calculated with the accuracy of

lattice sums, provided a suitable value of the cutoff lmax is taken. Since, according to Eqs. (9.3.1) and

(10.1.1) of [7], one has

jl(s) ∼
√

e/8
(es

2

)l

(l + 1/2)−l−1 (l � s), (13)

with e being the Euler number, a rapid convergence of series in Eq. (4) is ensured after some l0 > s.

Often the cutoff value

lmax ≈ σR + 4(σR)1/3 + 2

is large enough [23]. The largest value of |R| (s) for which G0Λ was calculated in Ref. [1] was Rmax =
√

3

(smax ≈ 11). Therefore, lmax ≈ 22 should be large enough to ensure convergence over entire scanned

region in Ref. [1]. Keeping lmax fixed to its maximal value 22, the convergence times T1 and T10000 do

not depend on R in the scanned region of Ref. [1]. Even with such an unoptimized procedure, Kambe’s

Eqs. (6)-(8) yield, according to Table I, roughly 12 times faster convergence for G0Λ than the methods in
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[1] (see Table V there). (Unfortunately, in [1] there is no description of a computer on which the speed of

convergence was tested. A reliable comparison would of course require to test the programs on the same

computer.)

For 1D periodicity (e. g., along the x-axis) in 2D, Kambe-like expressions for y = 0.03 (a z-like

coordinate there), have been found to yield 20 times faster convergence time T1 than the spectral domain

form of G0Λ [24]. Only as y (z in the current case) increases further, the respective T1 times are expected

to converge to the same value. This indicates for the current case that an optimized program employing

the Kambe expressions (6)-(8) can yield even faster convergence. Obviously, the speed of convergence

in the current case can be enhanced by a trivial modification: after storing the values of Dlm’s up to

lmax ≈ 22, the actual number of generated Bessel functions and spherical harmonics to be used in Eq.

(4) is made |R|-dependent. However, the main goal of the article was rather to point out the existence of

Kambe’s expressions (6)-(8) [2, 3, 5] than to discuss properties of the most optimized program employing

these expressions.

4 Conclusion

We have pointed out the existence of an alternative method for the calculation of the free-space periodic

Green’s function G0Λ that is superior to those discussed by Guérin, Enoch, and Tayeb [1]. The alternative

method, which is based on Kambe’s Eqs. (6)-(8) [2, 3, 5], can have accuracy close to machine precision and

is more efficient (at least 12 times faster for the same test as that in Ref. [1]). It yields a fast convergent

result for any z, i. e. also for z = 0, where the series discussed by Guérin, Enoch, and Tayeb [1] are only

conditionally convergent. Therefore, it deserves full attention of electromagnetic waves community.

A comprehensive review of exponentially convergent lattice sums of the free-space periodic Green’s

functions of the Helmholtz equation for all physical situations can be found in [25]. Numerical F77 codes

implementing Eqs. (6)-(8) can be found in a book by Pendry [12], or, can be downloaded from Comp.

Phys. Commun. [26, 27]. They are also available upon request from the author.
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TABLE I. Convergence times T1 and T10000 as a function of lmax for fixed σ = 2π and

k‖ = (σ sin(π/4), 0).

lmax 7 8 9 10 11 12 13 14 18 22

10000 ∗ T1 92 116 144 265 311 350 410 460 760 2800

T10000 4 5 7 8 9 11 13 14 19 25
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