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Rabi model Hamiltonian ĤR

ĤR = ~ω1â†â + ~∆σ3 + ~gσ1(â† + â)

= ~ω1â†â + ~∆ + ~g(σ+ + σ−)(â† + â)

ω ... cavity mode frequency, [â, â†] = 1
1 ... the unit matrix, g ... a dipole coupling constant
∆ = ω0/2, ω0 ... TLS resonance frequency
σj ... the Pauli matrices
κ = g/ω ... dimensionless coupling strength
µ = ∆/ω = ω0/(2ω)
Jaynes-Cummings (JC) model:

ĤJC = ~ω1â†â + ~∆σ3 + ~g(σ+â + σ−â
†)
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ODE for the Rabi model - [Schweber, Ann. Phys. 41, 205
(1967)]

Fock-Bargmann representation with a→ dz and a† → z yields for the

two-component wave function ψ(z) =
(
ψ+(z)
ψ−(z)

)
after the substitution

ψ±(z) = e−gz/ωφ±(z),

and on eliminating φ−(z)

(ω2z2 − g2)
d2φ+

dz2
+
[
−2ωgz2 + (ω2 − 2g2 − 2Eω)z +

g

ω
(2g2 − ω2)

] dφ+

dz
+

[
2g

(
g2

ω
+ E

)
z + E 2 −∆2 − g4

ω2

]
φ+ = 0

The necessary condition for the existence of a polynomial solution of

degree n is En = nω − g2

ω , the familiar baseline condition for the Rabi
model.

The baseline condition coincides with sl2 algebraization
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Kus construction - recapitulation

An exact polynomial solution of the Rabi model on the nth baseline
can be constructed as a finite linear combination of the solutions Φ±l
of a displaced harmonic oscillator (∆ = 0 limit of the Rabi model)
from all baselines l ≤ n and of the same parity.

For positive parity:

Ψ+
n = (2κ)nΦ+

n + µ
n∑

l=1

(2κ)n−l

l!
Kn,l−1

(
µΦ+

n−l + lΦ̃+
n−l

)
,

where Φ+
l is the displaced harmonic oscillator solution on the lth

baseline for κ = g/ω and Φ̃+
l is the solution on the lth baseline for

−g/ω, all solutions being of positive parity,

Φ+
l =

(
(z + κ)le−κz

(−1)k(z − κ)leκz

)
Φ̃+
l =

(
(−1)k(z − κ)leκz

(z + κ)le−κz

)
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Kus recurrence - [JMP 26, 2792 (1985)]

The polynomial Knn is defined by its own finite three-term recurrence
rescaled variables κ = g/ω, µ = ∆/ω for each n ≥ 0,

Kn0 = 1, Kn1 = 4κ2 + µ2 − 1

Knl = (4lκ2 + µ2 − l2)Kn,l−1 − 4l(l − 1)(n − l + 1)κ2Kn,l−2

The Kus polynomials are not orthogonal polynomials of independent
variable κ2, because the coefficient of Kn,l−2 depends on it!

In order that the Rabi model had a polynomial solution on the nth
baseline, the model parameters 4κ2 and µ2 have to be such that

Knn(4κ2, µ2) = 0

There are n simple roots for 0 < µ < 1
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Example from Solano et al, PRA 96, 013849 (2017)
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Example from Feranchuk et al, JPA 29, 4035 (1996)
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Gradation slicing - I

Ordinary linear differential equation (ODE) with polynomial
coefficients

LSn(z) =

{
A(z)

d2

dz2
+ B(z)

d

dz
+ C (z)

}
Sn(z) = 0

where

A(z) =
∑
k=0

akz
k , B(z) =

∑
k=0

bkz
k , C (z) =

∑
k=0

ckz
k

The grade of a term zmd l
z ... the integer m − l
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Gradation slicing - II

(S1) Consider a given differential equation as a linear combination of terms
∼ zmd l

z and determine the grade of each term.

(S2) Rearrange all the terms of the ODE according to their grade. The
subset Fg(zmd l

z ;m− l ≡ g) of the ODE with an identical grade g will
be called a slice.

The differential equation can be recast as

LSn(z) =

gmax∑
g=gmin

FgSn(z) = 0,

where the sum runs over all grades g.

Notation: In what follows we will use an abbreviation γ = gmax for
the highest grade and γ∗ = gmin for the lowest grade.
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Gradation slicing - III

Definition: A decomposition of original ordinary linear differential
equation into a sum of slices will be called gradation slicing.

We call the grade of an ordinary linear differential equation the
highest grade γ.

A width w of the gradation slicing will be called the integer
w := γ − γ∗ + 1.

The function Fg(k) defined by

Fgz
k := Fg(k)zk+g.

will be called an induced multiplicator corresponding to the slice Fg.

The width counts the number of possible slices with the grade
between the minimal and maximal grades, γ∗ and γ, respectively.

Unless C (z) is identically zero, one has always γ ≥ 0.

We shall assume that γ∗ ≤ 0. The case γ∗ > 0 can always be reduced
to the case γ∗ = 0 by factorizing zγ∗ out of the polynomial
coefficients of the differential equation.
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Gradation slicing IV - Examples

A hypergeometric equation is characterized by γ = 0, γ∗ = −2, and
w = 3.

A typical Heine-Stieltjes problem, where A(z),B(z),C (z) are
polynomials of exact degree N + 2, N + 1, N, respectively, is grade
γ = N, γ∗ = −2, w = N + 3 problem.

The condition that the slice with the highest grade γ annihilates a
monomial of degree n, Fγzn = 0, provides a necessary condition for
the existence of a polynomial solution of degree n,

Fγ(n) = 0
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Gradation slicing V - Examples - Two main alternative
types of differential equations

(A1) A conventional one when the highest derivative term [e.g. A(z)d2
z in

ODE does contribute to the slice Fγ with the highest grade γ. The
alternative occurs if

degB ≤ degA− 1, degC ≤ degA− 2

where strict equality applies in at least one of the above cases.

Examples are the Fuchsian equations, which include a hypergeometric
one, and the Heine-Stieltjes problem.

(A2) An anomalous one, when the highest derivative term [e.g. A(z)d2
z in

ODE does not contribute to Fγ . Applied to ODE, the alternative
occurs if

degB ≥ degA, degC = degB − 1

Examples: all Rabi model examples considered.
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General theory

Sn(z) =
n∏

i=1

(z − zi ) =
n∑

k=0

ankz
k (ann ≡ 1)

Fγ−1(n) + an,n−1Fγ(n − 1) = 0

Fγ−2(n) + an,n−1Fγ−1(n − 1) + an,n−2Fγ(n − 2) = 0

...
...

...
...

...
...

...
...

...
...

an,γ+2−γ∗Fγ∗(γ + 2− γ∗) + . . .+ an3Fγ−1(3) + an2Fγ(2) = 0

anwFγ∗(w) + . . .+ an2Fγ−1(2) + an1Fγ(1) = 0

an,w−1Fγ∗(w − 1) + . . .+ an1Fγ−1(1) + an0Fγ(0) = 0

(We recall that w = γ − γ∗ + 1 is the gradation slicing width.)
Each line summarizes all the terms contributing to the same power of
z , beginning from n − 1 + γ of the first equation down to γ of the
last equation.
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last equation.
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General theory

Sn(z) =
n∏

i=1

(z − zi ) =
n∑

k=0

ankz
k (ann ≡ 1)
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...
...

...
...

...
...

...
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Basic theorem for γ = 0

Theorem 1: A necessary and sufficient conditions for the ODE with
the grade γ = 0 to have a unique polynomial solution of nth degree is
that

Fγ(n) = 0, Fγ(k) 6= 0 (0 ≤ k < n)

where the second condition applies for n ≥ 1. �

The condition F0(n) = 0 is obviously necessary.

In order to demonstrate sufficiency, note that the second condition
F0(k) 6= 0 ensures that each subsequent line in the system (?) of n
equations, when progressing from the very top down, enables one to
uniquely determine newly appearing coefficient (i.e. an,n−l in the lth
line) and thus to determine at the end a unique set of coefficients
ank , 0 ≤ k < n. The initial condition ann = 1 is used here to simply
fix an arbitrary irrelevant multiplication factor. The point of crucial
importance is that for (and only for) γ = 0 the image LSn(z) and
Sn(z) are polynomials of the same degree.
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Basic theorem for γ = 0 - JPA 51, 295201 (2018)

Corollary 2: If Fγ(k) is a linear function of k , there is always at most
a single unique polynomial solution, because a linear function can
have at most a single root. �
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Basic theorem for γ 6= 0 - JPA 51, 295201 (2018)

Theorem 2: A necessary and sufficient conditions for the ODE with
the grade γ > 0 to have a unique polynomial solution is that, in
addition to the conditions of Theorem 1 which determine the unique
set of coefficients {ank}nk=0 by the recurrence (?), the subset
{an0, an1, . . . , an,w−2} of the coefficients {ank}nk=0 satisfies additional
γ constraints (??):

Pγ := an,w−2Fγ∗(w − 2) + . . .+ an1Fγ−2(1) + an0Fγ−1(0) = 0

...
...

...
...

...
...

...
...

...
...

P2 := an,1−γ∗Fγ∗(1− γ∗) + . . .+ an1F0(1) + an0F1(0) = 0

P1 := an,−γ∗Fγ∗(−γ∗) + . . .+ an1F−1(1) + an0F0(0) = 0
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Basic theorem for γ 6= 0 - II

Proof: According to the definition, Fγz0 ∼ zγ . Therefore, whenever
γ > 0, the recurrence (?) does not take into account the terms ∼ zk

of degree k < γ of the image LSn(z). There are exactly γ of such
polynomial terms with k = 0, . . . , γ − 1. One can verify that the
vanishing of the coefficients of zk , 0 ≤ k < γ amounts to solving the
system (?). The vanishing of the coefficients of zk , k < γ thus
imposes γ constraints on the (up to a multiplication by a constant)
unique set of coefficients ank .

Theorem 3: Provided that each Fg(k) is a polynomial in model
parameter(s) and the hypotheses of Theorem 2 are satisfied, each
recursively determined Pg, g = 1, . . . , γ of Eq. (?) is proportional to a
polynomial in model parameter(s). �
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An application to the Rabi model

We can read polynomial coefficients aj , bj , cj from

(ω2z2 − g2)
d2φ+

dz2
+
[
−2ωgz2 + (ω2 − 2g2 − 2Eω)z +

g

ω
(2g2 − ω2)

] dφ+

dz
+

[
2g

(
g2

ω
+ E

)
z + E 2 −∆2 − g4

ω2

]
φ+ = 0

Focusing on the nth baseline, En = nω − (g2/ω), which is the
solution of F1(n) = 0, one finds b1(En) = (1− 2n)ω2,
c0(En) = n2ω2 −∆2 − 2ng2, and

F1(k) = 2ωg(n − k)

F0(k) = k(k − 2n)ω2 + n2ω2 −∆2 − 2ng2

F−1(k) = kg
ω (2g2 − ω2), F−2(k) = −k(k − 1)g2

(The baseline condition coincides with sl2 algebraization!)

γ = 1 =⇒ single polynomial constraint
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A comparison of the polynomial constraint relation and the
Kus polynomial for the Rabi model at the fifth baseline

0,0 0,2 0,4 0,6 0,8 1,0

-4

-2

0

2

4

-4

-2

0

2

4

  

 n=5

g

The polynomials are plotted as a function of g with fixed ∆ = 0.1 and
ω = 0.4.
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Rabi model generalizations

Driven Rabi model

ĤR = ω1a†a + ∆σz + g σx
(
a† + a

)
+ δ σx

Two-photon Rabi model

Ĥ2p = ω1a†a + ∆σz + g σx
[
(a†)2 + a2

]
The nonlinear two-mode quantum Rabi model

Ĥ2m = ω1(a†1a1 + a†2a2) + ∆σz + g σx(a†1a
†
2 + a1a2)

The generalized, or also known as an asymmetric, Rabi model

ĤgR = ω1a†a + ∆σz + g1

(
a†σ− + aσ+

)
+ g2

(
a†σ+ + aσ−

)
interpolating between the Jaynes-Cummings (JC) model (for g2 = 0)
and the original Rabi model (g1 = g2)
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Ĥ2p = ω1a†a + ∆σz + g σx
[
(a†)2 + a2

]
The nonlinear two-mode quantum Rabi model
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An application to the driven Rabi model

We can read polynomial coefficients aj , bj , cj from

ĤR = (ω2z2 − g2)
d2

dz2
+

[
− 2ωgz2 + (ω2 − 2g2 − 2Eω)z − gω

+2g

(
g2

ω
∓ δ
)]

d

dz
+ 2g

(
g2

ω
+ E ∓ δ

)
z + E 2 −

(
g2

ω
∓ δ
)2

depending on the substitution e−gz/ωφ±(z) or e+gz/ωφ±(z)

On the nth baseline, En = nω − (g2/ω)± δ,

F1(k) = ±2ωg(n − k)

F0(k) = k(k − 2n)ω2 + n2ω2 −∆2 − 2ng2 ± 2(n − k)ωδ

F−1(k) = ±kg
ω (2g2 − ω2 ∓ 2ωδ), F−2(k) = −k(k − 1)g2

(The baseline condition coincides again with sl2 algebraization!)

γ = 1 =⇒ single polynomial constraint
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A comparison on the ninth baseline
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g

 constraint relation

The polynomials are plotted as a function of g with fixed ∆ = 0.1, ω = 0.4, and δ = 0.02. Dashed lines showing the
generalized Kus constraint polynomial for the driven Rabi model generated by the recursion (B.1) of Z.-M. Li et al,

JPA48, 454005 (2015)

P0 = 1, P1 = 4g2 + ∆2 − ω
2 − 2δ ω

Pk =
[
k(2g)2 + ∆2 − k2

ω
2 − 2kδ ω

]
Pk−1

−k(k − 1)(n − k + 1)(2g)2
ω

2Pk−2
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Quasi-exactly solvable potentials of the Schrödinger
equation - I

The Schrödinger equation (~ = 2m = 1)(
− d2

dx2
+ V

)
ψ = Eψ

for a number of quasi-exactly solvable potentials V can on using a
suitable substitution be recast in the same basic form as

(a3z
3+a2z

2+a1z)
d2φ(z)

dz2
+(b2z

2+b1z+b0)
dφ(z)

dz
+(c1z+c0)φ(z) = 0

where a3, a2, a1, b2, b1, b0, c1, c0 are constant parameters.

Three slices with the respective multiplicators

F1(n) = n(n − 1)a3 + nb2 + c1, F0(n) = n(n − 1)a2 + nb1 + c0,

F−1(n) = n(n − 1)a1 + nb0
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QES potentials - III

γ = 1 =⇒ single constraint polynomial (??)

P(n) := b0Pn,n−1 + c0Pnn = 0

Examples: two different sets of modified Manning potentials with
three parameters, an electron in Coulomb and magnetic fields and
relative motion of two electrons in an external oscillator potential, the
hyperbolic Razavy potential, a (perturbed) double sinh-Gordon
system, and many others.
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QES potentials - IV

The conditions enable one to determine unique set of coefficients
{Pnk}nk=0, defined recursively by the three-term recurrence for
1 ≤ k ≤ n beginning with Pn0 = 1 (cf. Eq. (11) of AM, JPA 51,
295201 (2018))

Pn1 = −F0(n)Pn0/F1(n − 1)

Pn2 = −[F−1(n)Pn0 + F0(n − 1)Pn1]/F1(n − 2)

...
...

...
...

Pn,k = −[F−1(n + 2− k)Pn,k−2 + F0(n + 1− k)Pn,k−1]/F1(n − k)

...
...

...
...

Pnn = −[F−1(2)Pn,n−2 + F0(1)Pn,n−1]/F1(0)

If the unique (monic) polynomial solution exists, then it is necessarily
given by Sn(z) =

∑n
k=0 Pn,n−kz

k .
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QES potentials - V

(A1) F1(n) does depend on energy =⇒ energy can be then expressed as a
function of model parameters, E = E (Vj), and thereby eliminated
from recurrence coefficients and from the constraint polynomial P(n)
by imposing the constraint F1(n) = 0. P(n) = 0 determines a
discrete set of parameters on the nth baseline at which polynomial
solutions exist, and in turn allowed energies by parametric dependence
E = E (Vj) =⇒ entirely analogous to the Kus polynomials in the Rabi
model.

(A2) Only the multiplicator F0(k) depends on energy, and is a linear
function of it =⇒ P(n) is necessarily a polynomial of degree n + 1 in
energy and provides a kind of energy quantization rule. The latter
sounds similar to the role played by a critical polynomial of the
Lanczos-Haydock finite-chain of polynomials (also known as the
Bender-Dunne polynomials).
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QES potentials - VI

For the QES examples considered, constraint polynomials terminate a
finite orthogonal polynomial system characterized by a
positive-definite moment functional L, implying that a corresponding
constraint polynomial has only real and simple zeros.

Any resemblance with the Bender-Dunne polynomials for the
alternative (A2) is only coincidental, because the finite orthogonal
polynomial system terminated by the constraint polynomials is shown
to be different from the weak orthogonal Bender-Dunne polynomials.
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QES examples - Alternative (A1)

V (x) = −V1 sech6x − V2 sech4x − V3 sech2x

[Xie, JPA 45, 175302 (2012)] [V1 ≡ 0 . . . Manning, J. Chem. Phys.
3, 136 (1935)]

V (x) =
V1

cosh2 x
+

V2

1 + g cosh2 x
+

V3

(1 + g cosh2 x)2

[Chen et al JPA 46, 035301 (2013)]

[
1

2

d2

dr2
− λ(λ− 1)

2

1

r2
− 1

2
ω2r2 +

β

r
+ α

]
u(r) = 0

with real parameters β, and λ, ω > 0, and eigenvalue α [Chiang et al,
PRA 63, 062105 (2001)]
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QES examples - Alternative (A1)
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Chen et al 3-parameter modified Manning

V (x) =
V1

cosh2 x
+

V2

1 + g cosh2 x
+

V3

(1 + g cosh2 x)2

The change in variable through z = − sinh2 x and the substitution

ψ(x) = (cosh x)2λ1(1 + g cosh2 x)λ2 sinh x φ(z),

λ1 = 1
4

(
1 +
√

1− 4V1

)
, λ2 = 1

2

[
1−

√
1 + V3/(1 + g)

]
transform the Schrödinger equation into

a3 = 1, a2 = −2− 1/g , a1 = 1 + 1/g

b2 = 2(λ1 + λ2 + 1)

b1 = −
[
2λ1 + 2λ2 + 7

2 + 2(λ1+1)
g

]
b0 = 3(1+g)

2g , c1 = (λ1 + λ2)(λ1 + λ2 + 1) + E+1
4

c0 = −1+g
4g

[
6λ1 + 4λ2 + 1 + 2λ2g−V2

1+g − V1 − V3
(1+g)2 + E

]
+ λ2

g
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Chen et al 3-parameter modified Manning - II

On the nth baseline

En = −1− 4(n + λ1 + λ2)(n + λ1 + λ2 + 1)

F1(k) = k(k − 1)− n(n − 1) + 2(k − n)(λ1 + λ2 + 1)

F0(k) = −k(k − 1)
(

2 + 1
g

)
− k

[
2λ2 + 2λ1 + 7

2 + 2(λ1+1)
g

]
+ c0(n)

F−1(k) = k(k − 1)
(

1 + 1
g

)
+ 3

2 k
(

1 + 1
g

)
= 1+g

2g k(2k + 1)

where

c0(n) = −1 + g

4g

{
6λ1 + 4λ2 + 1 +

2λ2g − V2

1 + g
− V1 −

V3

(1 + g)2
− 1

− 4(n + λ1 + λ2)(n + λ1 + λ2 + 1)

}
+
λ2

g
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Chen et al 3-parameter modified Manning - III

Pn1 = −F0(n)Pn0/F1(n − 1)

...
...

...
...

Pn,k = −[F0(n + 1− k)/F1(n − k)]Pn,k−1 − [F−1(n + 2− k)/F1(n − k)]Pn,k−2

...
...

...
...

Pnn = −[F0(1)/F1(0)]Pn,n−1]− [F−1(2)/F1(0)]Pn,n−2

P(n) = F−1(1)Pn,n−1 + F0(1)Pnn = b0Pn,n−1 + c0Pnn

defines for nth baseline a finite orthogonal polynomial system
{Pnk , k = 0, 1, 2, . . . , n, P(n)} in V2 =⇒ only simple roots
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Constraint polynomial for the Chen et al. generalized Manning potential in the odd parity case as a function of V2 with
fixed V1 = 0.09, V3 = 400, g = 0.25, and n = 7. There is the maximum number of 8 real zeros:

V2 = −374.929, −342.812, −316.597, −287.269, −248.489, −200.236, −142.792, −76.2691.
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Polynomial eigenfunctions for the Chen et al. generalized Manning potential in the odd parity case with fixed V1 = 1,
V3 = 400, g = 0.25, and n = 7 for the values of

V2 = −374.929, −342.812, −316.597, −287.269, −248.489, −200.236, −142.792, −76.2691.
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QES examples - Alternative (A2)

The hyperbolic Razavy potential [Am. J. Phys. 48, 285 (1980)]

V (x) =
1

4
ξ2 sinh2(2x)− (N + 1)ξ cosh(2x)

The double sinh-Gordon (DSHG) parity invariant system (also called
the bistable Razavy potential)

V (x) = [ξ cosh(2x)−M]2

(Baradaran et al, arXiv:1712.06439)

DSHG perturbed by

Vp = −g(g + 1)

cosh2 x
+

h(h + 1)

sinh2 x

[Khare et al, Pramana J. Phys. 73, 387 (2009)]
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The double sinh-Gordon (DSHG) parity invariant system

V (x) = [ξ cosh(2x)−M]2

where ξ and M are positive real parameters and lim|x |→∞ V (x) =∞.

The change of independent variable z = e2x and

ψ(z) = z
1−M

2 exp

[
−ξ

4

(
z +

1

z

)]
φ(z)

The baseline condition F1(n) = 2nξ − 2ξ(M − 1) = 0 =⇒ n = M − 1,

F1(k) = 2ξ(k − n), F0(k) = 4k(n − k) + c0(n), F−1(k) = −2kξ,

where c0(n) = 2n + 1− E + ξ2.
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DSHG - II

The baseline condition F1(n) = 2nξ − 2ξ(M − 1) = 0 =⇒ n = M − 1,

F1(k) = 2ξ(k − n), F0(k) = 4k(n − k) + c0(n), F−1(k) = −2kξ,

where c0(n) = 2n + 1− E + ξ2.

F1(n − 1)Pn1 = −F0(n)Pn0

...
...

...
...

F1(n − k)Pn,k = −F−1(n + 2− k)Pn,k−2 − F0(n + 1− k)Pn,k−1

...
...

...
...

F1(0)Pnn = −F−1(2)Pn,n−2 − F0(1)Pn,n−1

P(n) = F−1(1)Pn,n−1 + F0(1)Pnn = b0Pn,n−1 + c0Pnn

defines for nth baseline a finite orthogonal polynomial system
{Pnk , k = 0, 1, 2, . . . , n, P(n)} in E =⇒ only simple roots
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Constraint polynomial for the unperturbed DSHG with ξ = 2 on the 11th baseline corresponding to M = 12 is shown to
have the maximum number of 12 simple real roots E = 22.5949, 22.5949, 61.3442, 61.3580, 89.8744, 91.2808,
106.478, 117.007, 131.616, 147.980, 166.091, 185.777 reproducing the results of Tab. 3 of Ref. Baradaran and

Panahi, arXiv:1712.06439.
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Interlaced even and odd parity polynomial eigenfunctions for the unperturbed DSHG with fixed ξ = 2 and n = 10
corresponding to the twelve simple real roots E = 22.5949, 22.5949, 61.3442, 61.3580, 89.8744, 91.2808,

106.478, 117.007, 131.616, 147.980, 166.091, 185.777 of the constraint polynomial.
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Conclusions

The concept of constraint polynomials provides a deeper reason for
the existence of the original Kus polynomials and yields a versatile and
efficient tool to determine polynomial eigenvalues and eigenfunctions.

Our constraint polynomials, which differ from the weak orthogonal
Bender-Dunne polynomials, are yet another class of polynomials
closely related to the spectrum of quasi-exactly solvable models. For
the models considered here, constraint polynomials terminated a finite
chain of orthogonal polynomials characterized by a positive-definite
moment functional L, implying that a corresponding constraint
polynomial has only real and simple zeros.

General constraint polynomial approach is shown to replace a set of
algebraic equations of the functional Bethe Ansatz method by a single
polynomial constraint.
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Alexander Moroz Constraint polynomials Praha, July 11, 2018 42 / 42



Further reading

AM, JPA 51, 295201 (2018)

AM and Andrey E. Miroshnichenko, Constraint polynomial approach -
an alternative to the functional Bethe Ansatz method?
(arXiv:1712.06439)

Alexander Moroz Constraint polynomials Praha, July 11, 2018 42 / 42


	Overview
	Motivation
	Kus construction - [JMP 26, 2792 (1985)]
	Gradation slicing
	Basic theorems - JPA 51, 295201 (2018)
	Quasi-exactly solvable potentials of the Schrödinger equation
	Examples
	Alternative (A1)
	Alternative (A2)


