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The message I’m attempting to transmit

Tridiagonality is fundamental

Three-term recurrence relations are indispensable

Orthogonal polynomial systems are unavoidable

an efficient numerical method for energy levels
characterization of integrable and QES models in terms of intrinsic
polynomial properties
confine integrable spectra to four basic classes
characterization of chaos?

Alexander Moroz (WS) Recursive solution January 3, 2015 3 / 37



The message I’m attempting to transmit

Tridiagonality is fundamental

Three-term recurrence relations are indispensable

Orthogonal polynomial systems are unavoidable

an efficient numerical method for energy levels
characterization of integrable and QES models in terms of intrinsic
polynomial properties
confine integrable spectra to four basic classes
characterization of chaos?

Alexander Moroz (WS) Recursive solution January 3, 2015 3 / 37



The message I’m attempting to transmit

Tridiagonality is fundamental

Three-term recurrence relations are indispensable

Orthogonal polynomial systems are unavoidable

an efficient numerical method for energy levels
characterization of integrable and QES models in terms of intrinsic
polynomial properties
confine integrable spectra to four basic classes
characterization of chaos?

Alexander Moroz (WS) Recursive solution January 3, 2015 3 / 37



The message I’m attempting to transmit

Tridiagonality is fundamental

Three-term recurrence relations are indispensable

Orthogonal polynomial systems are unavoidable

an efficient numerical method for energy levels

characterization of integrable and QES models in terms of intrinsic
polynomial properties
confine integrable spectra to four basic classes
characterization of chaos?

Alexander Moroz (WS) Recursive solution January 3, 2015 3 / 37



The message I’m attempting to transmit

Tridiagonality is fundamental

Three-term recurrence relations are indispensable

Orthogonal polynomial systems are unavoidable

an efficient numerical method for energy levels
characterization of integrable and QES models in terms of intrinsic
polynomial properties

confine integrable spectra to four basic classes
characterization of chaos?

Alexander Moroz (WS) Recursive solution January 3, 2015 3 / 37



The message I’m attempting to transmit

Tridiagonality is fundamental

Three-term recurrence relations are indispensable

Orthogonal polynomial systems are unavoidable

an efficient numerical method for energy levels
characterization of integrable and QES models in terms of intrinsic
polynomial properties
confine integrable spectra to four basic classes

characterization of chaos?

Alexander Moroz (WS) Recursive solution January 3, 2015 3 / 37



The message I’m attempting to transmit

Tridiagonality is fundamental

Three-term recurrence relations are indispensable

Orthogonal polynomial systems are unavoidable

an efficient numerical method for energy levels
characterization of integrable and QES models in terms of intrinsic
polynomial properties
confine integrable spectra to four basic classes
characterization of chaos?

Alexander Moroz (WS) Recursive solution January 3, 2015 3 / 37



Trivial and always valid statement

For any linear self-adjoint Ĥ there always exists an orthonormal basis
{en}∞n=0 such that eigenstates |E 〉 of Ĥ

Ĥ|E 〉 = E |E 〉

can be expanded as

|E 〉 =
∞∑
n=0

pn(E )en
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Haydock’s recursive solution

(H1) the expansion coefficients {pn(E )} are polynomials with degree
pn = n, orthonormal with respect to the density of states (DOS),
n0(E ), ∫ ∞

−∞
pn(E )pm(E )n0(E )dE = δnm

(H2) energy eigenstates |E 〉 are the generating function of the
orthogonal polynomials

(H3) the orthogonality of the energy eigenstates, 〈E |E ′〉 = δEE ′ yields
a dual orthogonality relation

n0(E )
∞∑
n=0

pn(E )pn(E ′) = δEE ′

where E and E ′ are both eigenvalues
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Tridiagonality is generic

There always exists an orthonormal basis {en}∞n=0 such that a given
self-adjoint operator takes on a tridiagonal form

Hen = anen + bn+1en+1 + bnen−1 (1)

with real recurrence coefficients {an} and {bn}, where bn ≥ 0, n ≥ 0.
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Proof of Hen = anen + bn+1en+1 + bnen−1

n = 0: find a0, b1, e1
He0 = a0e0 + b1e1
a0 = 〈e0,He0〉
b21 = 〈(H− a0)e0, (H− a0)e0〉
e1 = (H− a0)e0/b1

Induction step to determine an, bn+1, en+1

〈en−1,Hen〉 = 〈en,Hen−1〉 ≡ bn
an = 〈en,Hen〉
bn+1en+1 = (H− an)en − bnen−1
b2n+1 = 〈(H− an)en − bnen−1, (H− an)en − bnen−1〉
en+1 = [(H− an)en − bnen−1]/bn+1

By construction en+1 normalized to one and orthogonal to en and en−1.

Alexander Moroz (WS) Recursive solution January 3, 2015 7 / 37



Proof of Hen = anen + bn+1en+1 + bnen−1

n = 0: find a0, b1, e1
He0 = a0e0 + b1e1
a0 = 〈e0,He0〉
b21 = 〈(H− a0)e0, (H− a0)e0〉
e1 = (H− a0)e0/b1

Induction step to determine an, bn+1, en+1

〈en−1,Hen〉 = 〈en,Hen−1〉 ≡ bn
an = 〈en,Hen〉
bn+1en+1 = (H− an)en − bnen−1
b2n+1 = 〈(H− an)en − bnen−1, (H− an)en − bnen−1〉
en+1 = [(H− an)en − bnen−1]/bn+1

By construction en+1 normalized to one and orthogonal to en and en−1.

Alexander Moroz (WS) Recursive solution January 3, 2015 7 / 37



Final check: en+1 orthogonal to en−2,. . . ,e0

Tridiagonality of Hen, self-adjointness, and normalizability

bn+1〈em, en+1〉 = 〈em,Hen〉 = 〈Hem, en〉

Tridiagonality for m < n − 1

Hem is a linear combination of em−1, em, and em+1, all of which have
zero overlap with en if m + 1 < n.
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Relation to orthogonal polynomials I

Wave function expansion

|E 〉 =
∞∑
n=0

pn(E )en

Three-term recurrence relation (TTRR)

Expansion coefficients satisfy

Epn(E ) = anpn(E ) + bn+1pn+1(E ) + bnpn−1(E ) (2)

with bk ≥ 0 and an initial condition p0 = 1 and p−1 = 0.
{pn(E )} are by the very definition orthogonal polynomials.
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Favard’s theorem (Theorem I-4.4 of Chihara’s book)

For given arbitrary sequences of complex numbers {cn} and {λn} in the
TTRR

xPn = Pn+1 + cnPn + λnPn−1

there always exists a moment functional, that is a linear functional L
acting in the space of (complex) monic polynomials C[E ], such that the
polynomials Pn defined by the TTRR are orthogonal under L:

L(Pk Pl) = 0 k 6= l ∈ N

The functional L is unique if we impose the normalization condition
L(P0) = L(1) = µ0, where µ0 is a chosen positive constant.
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Relation to orthogonal polynomials II

Shorthand for basis

en = pn(H)e0

Orthogonality relations

〈em, en〉 = 〈pm(H)e0, pn(H)e0〉 = δmn

Alexander Moroz (WS) Recursive solution January 3, 2015 11 / 37



Relation to orthogonal polynomials II

Shorthand for basis

en = pn(H)e0

Orthogonality relations

〈em, en〉 = 〈pm(H)e0, pn(H)e0〉 = δmn

Alexander Moroz (WS) Recursive solution January 3, 2015 11 / 37



Relation to orthogonal polynomials III

Change to the orthonormal basis of eigenstates

e0 =
∑
k

ωkψ(Ek)

Orthogonal polynomials of a discrete variable

〈em, en〉 =
∑
k

|ωk |2pm(Ek)pn(Ek) = δmn

Weight function is the local density of function (DOS)

n(E ) =
∑
k

|ωk |2δ(E − Ek)
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Weight function more rigorously (pp. 62-63 of Chihara’s
book)

limn→∞ xnl = ξl σ ≡ limj→∞ ξj

(a) ξl = σ = −∞ (l ≥ 1)

(b) −∞ < ξ1 < ξ2 < . . . < ξl = σ for some l ≥ 1

(c) −∞ < ξ1 < ξ2 < . . . < ξl < . . . < σ =∞
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Weight function is the set of limit points of flows of zeros

Alexander Moroz (WS) Recursive solution January 3, 2015 14 / 37



Numerical recipe

Choose Nc ≥ N0 and determine the first N0 zeros xNc l , l ≤ N0, of
PNc (x). Usually a good starting point is to take Nc ≈ N0 + 20.
Because PNc (x) has Nc simple zeros, any omission of a zero could be
easily identified.

Gradually increase the cut-off value of Nc . The latter is what drives
the incessant flows of polynomial zeros xNc l , wherein each flow is
characterized by the parameter l .

Monitor convergence of the respective flows induced by the very first
n zeros of PNc (x). Each flow is a monotonically decreasing sequence
having necessary a fixed limit point. Terminate your calculations
when the N0-th zero of PNc (x) converged to ξN0 within
predetermined accuracy. Then as a rule all other flows xNc l with
l < N0 have converged, too.
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Rabi model Hamiltonian ĤR

ĤR = ~ω1â†â + ~gσ1(â† + â) + µσ3

ω0 ... TLS resonance frequency, ω ... cavity mode frequency
µ = ~ω0/2, [â, â†] = 1,
g ... a coupling constant
1 ... the unit matrix
σj ... the Pauli matrices

In what follows: κ = g/ω, ∆ = µ/ω, ~ = 1
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Convergence toward the 1000th eigenvalue of the Rabi
model in positive parity eigenspace
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ε999 = 998.907883759510, 997.950425260357, 973.989087026621 for

(κ,∆) = (0.2, 0.4), (1, 0.7), (5, 0.4), respectively
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An approximation of the spectrum εl = l − κ2 of displaced
harmonic oscillator by the zeros xnl
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I’m looking for somebody to analyze level statistics.
My input: Thousands of energy levels per parity

subspace.
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Comparison with Braak’s PRL 107, 100401 (2011)

A transcendental function is constructed

G±(ζ) =
∞∑
n=0

Kn(ζ, κ)

[
1∓ ∆

ζ − n

]
κn

and one determines eigenvalues as zeros of G±(ζ).

The expansion coefficients Kn are determined by a TTRR

φn+1 −
fn(ζ)

(n + 1)
φn +

1

n + 1
φn−1 = 0

where

fn(ζ) = 2κ+
1

2κ

(
n − ζ − ∆2

n − ζ

)
.
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Shortcomings of Braak’s approach

Relies heavily on unproven hypotheses that G±(ζ) takes on a zero value
between its subsequent poles at ζ = n and ζ = n + 1

once - by implicitly presuming that at one of the poles G±(ζ) goes to
+∞ and at the neighboring pole goes to −∞, with a monotonic
behavior from +∞ to −∞ between the poles;

twice - implicitly presuming that G±(ζ) goes to one of ±∞ at both
subsequent poles, and in between the poles it has rather a featureless
behavior, e.g., similar to a cord hanging on two posts;

none - occurs under the similar circumstances as described in the
previous item, if the “cord is too short”, e.g., it does not stretch
sufficiently up or down so as to cross the abscissa.

Numerically no advantage over the classical Schweber’s solution [Ann.
Phys. (N.Y.) 41, 205 (1967)].
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Comparison with Braak’s PRL 107, 100401 (2011) - II

The TTRR for the coefficients Kn is not a fundamental one, i.e. not
of Haydock’s type, because of fn(ζ) is not a linear function of energy.

Any relation with the orthogonal polynomials {pn} is eluded.

Instead at looking straight at the zeros of pN of sufficiently large
degree, a complicated composite object, G±(ζ), is formed.
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Is Rabi model integrable or solvable?
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Structure relation and bispectral condition

Divided-difference operator or discrete derivative

Dx f (x) =
f (ι+(x))− f (ι−(x))

ι+(x)− ι−(x)

Structure relation

Dxpn(x) = −Bn(x)pn(x) + An(x)pn−1(x)

where Dx : Πn[x ]→ Πn−1[x ], Πn[x ] being the linear space of polynomials
in x over C with degree at most n ∈ Z≥0
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Consequences of a structure relation

if there is one structure relation there is another - simply apply the
fundamental TTRR

a pair of mutually adjoint raising and lowering ladder operators

orthogonal polynomials satisfy in general a second-order difference
equation = bispectral property

allows one to introduce a discrete analogue of the Bethe Ansatz
equations

the polynomials are hypergeometric of Askey-Wilson type
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Dx requires four primary classes of special non-uniform
lattices

1 the linear lattice

2 the linear q-lattice

3 the quadratic lattice

4 the q-quadratic lattice

Either
Λ = {x | x = u2n

2 + u1n + u0, n ∈ N}

or
Λ = {x | x = u2q

−n + u1q
n + u0, n ∈ N}

where uj are real constants and the real parameter q satisfies 0 < q < 1
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Is Rabi model integrable or solvable?
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Characterization of tridiagonal
Hen−1 = an−1en−1 + bnen + bn−1en−2

(A) bn = 0 for some n = N > 0

(B) bn 6= 0 for all n ≥ 0
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Hen−1 = an−1en−1 + bnen + bn−1en−2 with bN = 0 for
some N > 0

pN (E ) enters the TTRR first for n = N . One has

pn+N (E ) = pN (E )Qn(E ) (n ≥ 0)

i.e. pN+1(E ) is proportional to pN (E ). The quotient polynomials
Qn(E ) form a new orthogonal sequence of polynomials.

The polynomials {pn(E )}N−1n=0 decouple from {pn(E )}∞n=N .

The operator Ĥ has necessary a finite dimensional invariant subspace
VN = {en}N−1n=0 .
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Quasi-exact solvabality of a linear differential operator Ĥ

Ĥ preserves a finite dimensional subspace VN of a Hilbert space
L2(S) (S ⊂ R), ĤVN ⊂ VN , dimVN = N <∞, on which the
operator Ĥ is naturally defined

The basis of VN admits an explicit analytic form
VN = span {e0(x), . . . , eN−1(x)}
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Basic properties of finite OPS defined by
xPn = Pn+1 + cnPn + λnPn−1

If λk > 0 and ck are real for k = 0, 1, . . . ,N − 1 then:

the polynomials of the resulting finite orthogonal polynomial sequence
{Pk}Nk=1 have real and simple zeros

the zeros of {Pk}Nk=1 interlace (the Sturm property)

νP(E ) =
∑N−1

k=0 wk θ(E − Ek), where θ(x) is Heaviside’s step
function, Ek are the N zeros of PN , and the coefficients wk can be
found by solving

N−1∑
l=0

Pk(El)wl = δk0, k = 0, 1, . . . ,N − 1.

wk > 0 for 0 ≤ k < N
dνP(E ) is unique
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Normalization paradox

Orthogonality

L[π(x)pn(x)] = 0

for every polynomial π(x) of degree k < n. Hence the norm of pn(E ) for
n ≥ N vanishes, i.e.

0 ≡ 1

bN+1
L[ENpN (E )]

Paradox

One cannot satisfy (H1), i.e. that {pn(E )} are orthonormal with respect
to the density of states (DOS), n0(E ),∫ ∞

−∞
pn(E )pm(E )n0(E )dE = δnm
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Resolution

Assume that the respective spectra obtained in VN and L2(S)\VN form
two disjoint intervals on the real axis, S = Sqes ∪ S∞, sup Sqes < inf S∞.

On Sqes is n0(E )dE represented by the discrete measure dνP(E )

On S∞ is n0(E )dE represented by

dνPQ(E ) =
1

p2N (E )
dνQ(E ) (E ∈ S∞)
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Conclusions

tridiagonality is fundamental

TTRR are indispensable

OPS are unavoidable

an efficient numerical method for energy levels
characterization of integrable and QES models in terms of intrinsic
polynomial properties
confine integrable spectra to four basic classes
characterization of chaos?
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R. Haydock, p. 217 of his review:

“The generality of this result suggests a new way of looking at quantum
mechanics. Since any quantum system can be transformed into a chain
model, we need only investigate such chain models in order to see the
varieties of quantum phenomena that are possible. To understand a
particular physical system, we need only find the chain model appropriate
to it.”
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The End
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Further reading

This talk has been based on excerpts from my arxiv:1205.3139; EPL 100, 60010 (2012);
AP 338, 319-340 (2013); AP 340, 252-266 (2014); J. Phys. A: Math. Theor. 47(49),
495204 (2014); AP 351, 960-974 (2014)

Visit me at http://www.wave-scattering.com.

F77 source codes and numerical data files for the Rabi model can be freely downloaded
from http://www.wave-scattering.com/rabi.html

My all F77 scattering codes are available at
http://www.wave-scattering.com/codes.html

For list of my unfinished projects see http://www.wave-scattering.com/projects.html
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