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Overview

Motivation: overcome the fundamental limit of the maximum of three
spatial dimensions in experiments

Mapping from N to 1D preserving exact dynamics of a selected
anchor site

Dynamics associated with high dimensions

Bound states at the edge of the continuum (BSEC) - a
fundamentally nontrivial addition the bound states in the continuum
(BIC) - are shown to occurs exclusively in D ≥ 4

Conclusions
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Motivation - our limited goal

General aim is to achieve a perfect one-to-one reproduction of
the entire multi-dimensional lattice in synthetic space. However,
this inevitably comes at the steep cost of exponentially increasing
complexity when attempting to access higher dimensions.

Our modest goal for a single anchor site: tailor the tridiagonalization
by choosing a specific initial vector v1 = |md〉, where |md〉 represents
the anchor site in the multi-dimensional lattice.

We show that arbitrary Hermitian multi-dimensional lattices with any
local or non-local coupling distribution can be mapped to a 1D lattice
with judiciously tailored nearest-neighbour couplings and detunings,
such that the dynamics at a chosen anchor site is faithfully
reproduced by the first site of the 1D lattice.
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A linear Hermitian Hamiltonian H and a local defect with a
“detuning” ρ in the form of a substitutional impurity at site md,

i
dΨm

dt
=
∑
m′

Hm,m′Ψm′ + ρδm,md
Ψm,

t is the normalised time coordinate, m labels lattice sites, Ψm are
complex wave function amplitudes, δm,md

is the Kronecker delta

The Lanczos method determines a unitary transformation V relating
H to a three-diagonal Hamiltonian H(3) = V∗HV corresponding to a
1D lattice with nearest-neighbour coupling by considering single-site
excitations at the anchor defect site md as the initial step for a
recursive Lanczos algorithm,

i
dΦm

dt
= εmΦm + Cm−1Φm−1 + CmΦm+1 + ρδm,1Φm =

N∑
m=1

H
(3)
nmΦm,

where for m ≥ 1, εm and Cm are the respective on- and off-diagonal
elements of H(3)
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3D to 1D example

(a) Sketch of a 3D cubic structure with inhomogeneous nearest-neighbour-only couplings, with different coupling values denoted
by lines with different colors. An anchor site (numbered 1) is marked red. (b) The Hamiltonian of the 3D structure in (a), where
on-site detunings are all zero. (c) Sketch of the 1D equivalent lattice mapped from the 3D structure in (a). (d) The coupling
constants Cm (left) and on-site detunings εm (right) of the 1D lattice in (c). (e) Sketch of the similar 3D structure as (a) with
additional diagonal couplings. (f) Hamiltonian of the 3D structure in (e). (g) Sketch of the 1D lattice mapped from (e). (h)
The coupling constants Cm (left) and on-site detunings εm (right) of the 1D lattice shown in (g).
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Mapping peculiarities

Generally, the number of sites in the 1D equivalent lattice is equal to
the number of unique elements in the set of eigenvalues {λn} of H,
that have non-zero local density of states at the anchor site.

In the 1D equivalent lattice, there can be a smaller number of sites
than in the multidimensional lattice that it is mapped from. There are
two sources of site-number reduction:

(i) the degeneracy of eigenvalues, since several degenerate modes will
be mapped to one particular eigenfunction superposition that would be
excited at the input, while the amplitudes and relative phases of such
modes remain unchanged during propagation
(ii) the eigenmodes with vanishing local density of states at the anchor
site, since such states would not be excited and are effectively removed
from the mapping to 1D
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4D to 1D example

(a) Sketch of a four-dimensional tesseract (3D projection of the structure), where spheres mark the discrete sites and the

connecting lines between them indicate the couplings κ1 = 1, κ2 = 2, κ3 = 3, and κ4 = 4. (b) The 1D mapping of this 4D

object, where the excitation dynamics of first site is the same as for the corresponding red anchor site in (a). (c) The

nearest-neighbour coupling coefficients Cm of the one-dimensional mapped lattice.
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4D to 1D example

(a) Sketch of a multi-dimensional network of coupled four-dimensional hypercubes (tesseracts) shown in a 3D projection, where
the black spheres mark the discrete sites and the connecting lines between them indicate the equal couplings. (b) The 1D
mapping of this network, where the excitation dynamics of first site is the same as for the corresponding red anchor site in (a).
(c) The nearest-neighbour coupling coefficients Cm (blue dashed) and the on-site detunings εm (red filled) of the 1D mapped
lattice.
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Example of mapping a two-dimensional ring lattice of 11 sites (a) to a one-dimensional lattice of 6 sites (b). The Hamiltonian of

the original lattice H and the mapped lattice H(3) are plotted in (c) and (d), respectively. (e,f) The dynamics of all sites when
the anchor (first) site is excited, in (e) the original lattice and (f) the mapped lattice. (g) Elements Vp,q of the matrix V that

describes the mapping, H(3) = V†HV .

Alexander Moroz BSEC AAMP XVI, September 11, 2019 9 / 26



2D to 1D example - an experimental verification

(a) Schematic of a 2D square lattice with equal horizontal and vertical couplings, and (b) the mapped 1D lattice with its
non-uniform coupling distribution Cn implemented by different spacings. (c,d) Experimentally observed propagation dynamics in
the experimentally realized 2D and 1D arrays. The arrows denote the propagation direction z along the waveguides. The 2D
structure has been inscribed at a tilt angle of 20 to allow each lattice site to be viewed without obstruction or overlay. (e)
Zoomed-in views of the anchor waveguide in the 2D lattice, (f) the first waveguide in the 1D equivalent lattice, and (g)
tight-binding simulation. Note that the equivalent structure matches the anchor site dynamics remarkably well, such that the
observed intensity distributions in them are more similar to one another than either of them is to the behaviour predicted by the
tight-binding approximation.
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Dynamics associated with Nd -dimensional hypercubes with
a single defect

Having verified mapping viability, investigate dynamics associated
with high dimensions

From now on, only periodic hypercubic lattices with a constant
nearest-neighbour coupling C̃Nd

factorised as C̃Nd
= C̃/Nd. This

ensures that the respective systems exhibit photonic bands in the
same interval 2C̃ < β < 2C̃ in order to allow for a direct comparison
of effects associated with the multi-dimensional diffraction relation
β = 2C̃

∑Nd
n=1 cos(kn), where k = (k1, k2, . . . , kNd

) is the wave vector
of the Bloch waves and β is the propagation constant.
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Normalized coupling coefficients (Cm/C̃) for the mapped 1D structure from Nd -dimensional lattices as indicated by labels,
shown for the first 16 sites.

Alexander Moroz BSEC AAMP XVI, September 11, 2019 12 / 26



(a) Sketch of 1D, 2D and 3D lattices, each with an anchor site marked in red. (b) Calculated normalized coupling coefficients

(Cm/C̃) at the first 24 sites of a 1D structure mapped from an Nd = 7 lattice. Inset: Schematic of the experimental realisation

with appropriate inhomogeneous spacings between adjacent waveguides. (c,d) Dynamics of intensities at the excited sites for

Nd = 1, 3, 7: (c) theory and (d) experimental observations in the first waveguides of the mapped 1D lattices with

C̃ = 1 cm−1. (e) Fluorescence images of the propagation dynamics in the 1D mapped lattices corresponding to the

dimensionalities Nd = 1, 3, and 7.
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Dynamics

The dynamics resulting from a single-site excitation in the defect-free
case represents the (spatial) Green’s function

GNd
(z) = Φ1(z)/Φ1(z = 0) = [J0(2C̃Nd

z)]Nd

which effectively characterizes the response of the entire lattice

The wavefunction at the anchor site is Φ1(z) = GNd
(z) for a

unit-amplitude excitation at the anchor site

The frequency-domain (corresponding to wavenumber-space for
waveguides lattices) Green’s function is

G̃Nd
(β) = −i

∫ ∞
0

e iβz [J0(2C̃Nd
z)]Nd dz =

∫ ∞
0

e−βz [I0(C̃Nd
z)]Nd dz

The presence of a defect ρ at the anchor site acts as an effective
distributed source along the waveguide,

Φ1(z) = GNd
(z) + iρ

∫ z

0
GNd

(z − z ′) Φ1(z ′) dz ′
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Localized defect modes

Knowledge of the Green’s function in a defect-free lattice allows us to
predict the localisation behaviour upon introduction of a defect
(substitutional impurity) as

ρ = 1/G̃Nd
(βd)

where βd is the propagation constant of a localised defect mode.

Real-valued detunings ρ can support localization in the photonic
band-gap, where Im G̃Nd

(β) = 0 =⇒ Im G̃Nd
(β) reflects this tendency

of light to remain localised in the excited anchor site.

The excitation efficiency for the localised defect mode = the fraction
of power remaining at the input site after a sufficiently long evolution.
In the theoretical limit of z → +∞, it is expressed as:

η =

(
∂ρ

∂βd

)−2
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From localised defect modes to BSEC

The localized modes appear at the photonic band-edge in lattices of
any dimensionality

For conventional dimensions Nd ≤ 3, the band-edge modes extend
throughout the lattice and accordingly η = 0

For Nd ≥ 4, the excitation efficiency instantly attains a finite non-zero
value at the critical defect strength ===> Bound states at the edge
of the continuum (BSEC) - a fundamentally nontrivial addition the
bound states in the continuum (BIC)
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(a) Theoretical plot of the defect state propagation constant βd versus the defect strength ρ. (b) Color plot illustrating the
dependence of the population in the first nine waveguides (horizontal axis) of the mapped structure on the propagation constant
βd (vertical axis) of the defect state for Nd = 1, 3 and 5.
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BSEC analysis

The band-edge corresponds to the branch point at β = Nd of the LT
integral, G̃Nd

(β) =
∫∞

0 e−βz [I0(C̃Nd
z)]Nd dz , and we are interested

only in the band-gap region

Given

Iν(z) ∼ ez√
2πz

, | arg z | ≤ π/2− δ

investigate the qualitative behaviour of G̃Nd
(β) in Nd dimensions

where Re β ≥ Nd approaches a band-edge

At the same time, Iν(z) (ν ≥ 0) is positive and monotonically
increasing (from I0(0) = 1 for ν = 0) to infinity
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BSEC analysis - II

With ∆ = β − Nd ≥ 0 being the distance of β to the branch point at
Nd , one has in virtue of the positivity, monotonicity, and the leading
asymptotic of I0(z) for z →∞ for sufficiently large a (up to a
proportionality constant)

G̃Nd
(β) ∼

∫ ∞
a

e−∆zz−Nd/2 dz

Because
∫ a

0 e−βz [I0(z)]Nd dz is a finite number, one sees immediately

that at the band edge G̃Nd
(Nd) in 1D and 2D diverges and is finite

for Nd = 3

=⇒ localized modes appear in 1D and 2D for any defect strength,
whereas for Nd ≥ 3 a critical defect magnitude, ρ ≥ ρcr , is required.
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dependence of the population in the first nine waveguides (horizontal axis) of the mapped structure on the propagation constant
βd (vertical axis) of the defect state for Nd = 1, 3 and 5.

Alexander Moroz BSEC AAMP XVI, September 11, 2019 20 / 26



BSEC argument

One can easily argue that Nd = 4 is the first dimension for which the
excitation efficiency η = ∂βG̃Nd

(β)/[G̃Nd
(β)]2 at the band edge will be

finite.

By performing the derivative in the LT integral one finds that the
derivative tail for sufficiently large a is∫ ∞

a
e−∆zz1−Nd/2 dz . (1)

But this coincides with the tail of G̃Nd
in the dimension Nd − 1. Knowing

that (the tail of) G̃Nd
(Nd) diverges for Nd = 0, 1, 2 and is finite for

Nd = 3, the derivative of G̃Nd
(Nd) diverges for Nd = 1, 2, 3 and is finite

for Nd ≥ 4. Hence the excitation efficiency η at the band edge is zero for
Nd = 1, 2, 3 and becomes finite beginning with Nd = 4.
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(c),(d) Fluorescence images of the mapped Nd = 5 lattices with a defect: (c) below the localisation threshold, for a detuning of

1.02 cm−1, light is able to escape; (d) above the localisation threshold, for a detuning 1.95 cm−1, the initial excitation

remains largely localized. (f) Experimentally observed localisation at the defect (symbols) compared with the theoretical

predictions (lines) in the planar lattices with different mapped dimensionality Nd = 1, 3, 5, defined as the average relative

intensity in the last 1 cm of the first waveguide. To indicate the influence of random fabrication imperfections, the error bars are

numerically derived from an ensemble of 300 realizations with Gaussian-distributed lattice parameters centered around the

design values with their typical standard deviation of 10 %.
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Theoretical analysis of the influence of finite propagation length onto multidimensional defect localization. (a–f) Color density

plot of the (a–c) defect localization, |Φ1(z)|2, and (d–f) defect sensitivity, defined as d|Φ1(z)|2/dρ, versus the defect strength

(horizontal axis) and normalized propagation length zC̃ (vertical axis) for Nd = 1, 3 and 5, as indicated by labels.
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(g–i) Plots of the defect localization (left) and defect sensitivity (right) versus defect strength for the propagation lengths

zC̃ = 10, 50 and 100, respectively.
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Conclusions

Bound states at the edge of the continuum (BSEC) - a
fundamentally nontrivial addition the bound states in the continuum
(BIC) - are shown to occurs exclusively in D ≥ 4

BSEC giving rise to a sharp localization transition and an extreme
increase of sensitivity with respect to the detuning of the respective
anchor site

Series of experimental verifications of the mapped equivalent lattices
of up to 7D systems were implemented and corresponding dynamics
was observed

Other tridiagonalization algorithms (e.g. the Householder
transformation previously applied for isospectral mapping) do not
allow for such an explicit choice

The concept of synthetic dimensions effectively extends the scope of
experimental observations beyond the (3+1)-dimensional space-time
and thereby opens up new opportunities in various physical contexts,
from innovative light control to quantum information processing
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High-dimensional synthetic lattice with enhanced defect sensitivity in planar
photonic structures, in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA,
Sensors, Networks, SPPCom, SOF), OSA Technical Digest, paper NpTh3I.3

Experimental realization of high dimensional synthetic lattices in planar
photonic structures, in 2018 Conference Conference on Lasers and
Electro-Optics, OSA Technical Digest, paper JTh5B.7

Experimental Realization of Exact Mapping from Multi-Dimensional to
Planar Micro-Photonic Lattices, in 2017 European Conference on Lasers and
Electro-Optics and European Quantum Electronics Conference, OSA
Technical Digest, paper CK−13−1

Optical Simulation of Nonlinear Twisted-Ring Defect States with Planar
Waveguide Arrays, in Frontiers in Optics 2016, OSA Technical Digest, paper
JTh2A.141

Optical simulation of multi-dimensional nonlinear defect states with planar

waveguide arrays, in Photonics and Fiber Technology 2016 (ACOFT, BGPP,

NP), OSA Technical Digest, paper NTh1A.4

Thank you for your attention!
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