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The mean-free path Leff is calculated for a circular shell geometry under the assumptions of (i) billiard scattering
and (ii) diffusive scattering. Similarly to a spherical shell geometry, Leff displays qualitatively different behavior on
the shell thickness D for the two models. Whereas, for the billiard model Leff ¼ πD=2, the mean-free path in the
diffusive scattering case is a complicated function involving complete and incomplete elliptic integrals of the first,
second, and third kinds. Nevertheless, a linear combination ofD andD lnðR=2DÞ, where R is the outer circle radius,
is shown to capture the functional dependence of Leff in the diffusive scattering case remarkably well over almost
the entire parameter range. Hopefully, future experiments on single and well-controlled dielectric-core–metal-
shell nanowires could differentiate between the two models. © 2011 Optical Society of America

OCIS codes: 350.4238, 350.4990, 240.6680.

1. INTRODUCTION
Metal nanoparticles (MNPs) have been playing an increasingly
important role in modifying fluorescence rates for addressing
various issues of interest to biology [1–5], solar energy conver-
sion [6], localized surface plasmon resonance (LSPR) sensing
[7–13], and surface-enhanced spectroscopies [14,15]. The per-
formance of individual MNPs in the above applications is cru-
cially influenced by the LSPR homogeneous line width—the
full width at half-maximum (fwhm) Γ—or, alternatively, the
LSPR dephasing time T2 ¼ 2ℏ=Γ [16,17]. The standard classi-
cal approach for describing the size dependence of the dielec-
tric function assumes that, if a particle size is comparable to or
smaller than the mean-free path of free conduction electrons
in the bulk material, ℓ∞ (42nm for gold [18], 52 nm for silver
[19,20], and 45nm for Cu [20]), the scattering of conduction
electrons from the particle surface results in a reduced effec-
tive mean-free path, Leff < ℓ∞, called the free-path effect

[18,19,21–23]. For particles small enough that retardation ef-
fects are not significant (i.e., with k being a wave vector, one
can ignore k2- and k3-dependent terms in the particle polariz-
ability [24]), and whose spectra are dominated by a single
plasmon resonance, the LSPR resonance linewidth is, accord-
ing to the Mathiessen’s rule, given by [18,19,21–23]

Γ ¼ Γ0 þ
vF

Leff
: ð1Þ

The first term, Γ0 ¼ vF=ℓ∞, on the right-hand side accounts for
bulk effects and describes the intrinsic bulk width of the di-
pole plasmon polariton. The second term, comprising the
Fermi velocity vF of conduction electrons (1:38 × 106 m=s for
gold and 1:39 × 106 m=s for silver [22]), accounts for the sur-
face scattering. Indeed, the ratio vF=Leff may be interpreted
classically as the effective rate of scattering of a conduction
electron off the particle surface. The surface scattering in-
duces a size-dependent correction to the dielectric function
εb of a bulk metal. The contribution of free electrons to the
dielectric function is described by the familiar causal and
(during collisions) electron number conserving Drude-like
dielectric function:

εDðωÞ ¼ 1 −
ω2
p

ωðωþ iγÞ ; ð2Þ

where ωp and γ are the plasma frequency and damping con-
stant (which also account for elastic scattering), respectively.
A standard approach to incorporate the free-path effect, or the
size correction, is to replace εb by [19]

εmðωÞ ¼ εbðωÞ − εD;bðωÞ þ εD;sdðωÞ; ð3Þ

where εD;b is the Drude dielectric function describing free con-
duction electrons of the bulk metal with the bulk damping
constant γ ¼ Γ0, whereas the term εD;sd differs from εD;b in
that Γ0 is replaced by the size-corrected value Γ. Obviously,
the above described subtraction and addition of the Drude-
like terms with different damping constants has the net effect
of renormalizing the damping constant of free conduction

electrons from their bulk value Γ0 to Γ. The size correction
has to be taken into account if MNP properties, such as the
quality factor Q of the resonance at an energy Eres (Q ¼
Eres=Γ) and the local field enhancement factor jf j (in a harmo-
nic model jf j ¼ Q), are to be accurately modeled [16,17]. It
constitutes an intrinsic limit to the LSPR width in small par-
ticles and is thus a limiting factor in the possible size reduction
for many applications.

Classically, the mean-free path Leff is calculated as the
average chord length between one point on the surface and

any other point, averaged, with a suitable probability mea-

sure, over all points on the surface as the initial point.
According to the Euler diffusive surface scattering model
[21], the electron reflection on the boundary surface is taken
to be fully isotropic, meaning there is equal probability for an
electron to be scattered at any angle with respect to the sur-
face normal n. For that reason, the model is sometime referred
to as the isotropic scattering model [22]. In the billiard case,
one weights the chords with the cosine of the angle between
the chord and the surface normal [25–27]. Provided that the
cosine reflects the physical probability of the chords upon the
surface scattering, the radiant intensity from an electron

1130 J. Opt. Soc. Am. B / Vol. 28, No. 5 / May 2011 Alexander Moroz

0740-3224/11/051130-09$15.00/0 © 2011 Optical Society of America

Wave-scattering.com
Wave-scattering.com


enclosure surface would be proportional to the cosine of the
angle θ between the observer’s line of sight and the surface
normal n. Thereby, an area element on the surface when
viewed from any angle would have the same radiance, turning
the electron enclosure surface into a “Lambertian” surface
[27]. The difference in the surface scattering description is
then reflected in different probability measures [see Eqs. (7)
and (8)].

Following our earlier treatment of a mean-free path in a
spherical shell geometry [27], the focus of this article is on
elongated wire-, or cylindrical-, like structures. As first sug-
gested in [28], elongated metal nanowires can be prepared by
filling the pores of deep etched silicon substrates and thereby
obtaining two-dimensional (2D) photonic crystals with a
complete photonic bandgap in the visible [28]. Alternatively,
isolated metallic nanowires can be synthesized using
template-directed electrosynthetic techniques [29], or a struc-
tured pattern of nanoscale metal wires can be formed in a
microstructured silica fiber [30]. The emphasis here shall
be on elongated core–shell structures. In nanophotonics
and nanoplasmonics, a coaxial metal–dielectric–metal struc-
ture, a dielectric–metal–dielectric tube structure, together
with a metal tube with either (i) a central hole or (ii) two par-
allel holes, have all been considered for guiding of a one-
dimensional optical beam with nanometer diameter [31]. By
using suspended single-wall carbon nanotubes as substrates
for deposition of various metals by evaporation, individual
metal nanowires 10nm wide and with continuous length up
to tens of micrometers can be fabricated [32]. Alternatively, a
2D array of silicon posts can be coated with metals, thereby
preparing 2D plasmonic waveguiding structures with en-
hanced photonic bandgaps [33]. However, contrary to the
case of spherical or spheroidal particles [16–19,21–23], the ne-
cessity in using a size-corrected dielectric function [Eq. (3)]
for elongated structures has received little attention, even
though the effect is expected to be more pronounced than
the effect of the so-called nonlocal dielectric function
(see [34]).

Provided one is only interested in the propagation in the
transversal direction (e.g., electric field intensity oriented
perpendicular to the cylinder axis), the core–shell problem re-
duces to the calculation of a mean-free path in a circular shell
region that is (i) neither convex nor (ii) simply connected. This
means that the early results by Cauchy [35,36], Czuber [37],
Dirac [38], Weinberg and Wigner [39], and others [40–42],
which yield the mean-free path in terms of the geometrical
parameters of a convex domain Ω in d spatial dimensions,
can no be longer applied. Nevertheless, in the billiard case,
one could still apply a general geometric formula [25,26]:

LB ¼ jΩj · jSd−1j
j∂Ωj · jBd−1j : ð4Þ

The formula reduces to the Cauchy formula for convex do-
mains but its validity is much broader—any bounded and con-

nected domain [25,26]. Here jΩj is the d-dimensional volume
(i.e., the area for d ¼ 2) of Ω, j∂Ωj is the area of the ðd − 1Þ-
dimensional surface ∂Ω (i.e., the total circumference for
d ¼ 2) of Ω, jSd−1j is the surface of a unit sphere in Rd, and
jBd−1j ¼ jSd−2j=ðd − 1Þ is the volume of a unit ball in Rd−1.
One has

S1 ¼ 2π; S2 ¼ 4π; B1 ¼ 2; B2 ¼ π: ð5Þ

The outline of the article is as follows. In Section 2 we sum-
marize notation and give some basic definitions. Since only an
abstract proof of the general geometric billiard formula in
Eq. (4) exists [25,26], it is regarded expedient to illustrate
its validity on some special cases that are outside the reach of
early theories by Cauchy [35,36] and others [37–42]. This is
done in Section 3, where the billiard formula in Eq. (4) is con-
firmed in the cylindrical shell case by an explicit averaging
procedure. The mean-free path Ld for the case of the diffusive
scattering is calculated in Section 4. Quite surprisingly, unlike
in a spherical shell geometry [27], Ld cannot be expressed in
terms of elementary functions. Nevertheless, it is possible to
determine a two-term asymptotic, which can be used instead
of the exact formula over almost the entire parameter range.
In Section 5 various conditions of the applicability of our re-
sults are discussed (see Fig. 4). We then conclude by Section 6.
A number of formulas and intermediary steps are relegated to
Appendix A.

2. NOTATION AND DEFINITIONS
Let r1 and r2 be the radii of the inner and outer surfaces of the
cylindrical shell, respectively [see Figs. 1 and 2]. Following the
notation of [27] and its online supplement, let us introduce at
any point P of the boundary surface ∂Ω of Ω coordinates with
the origin at P, with θ being the angle between the chord and
the inward normal at P. Let LðθÞ be the length of the straight
chord line PP0 at an angle θ to the inward normal at P con-
necting the point P with a conjugate boundary point P0. The
averaging over different chord lengths LðθÞ emanating from P

involves an integration over the angle of π above the tangent
plane at the point P, i.e., with the integration range
θ ∈ ð−π=2; π=2Þ:

ℓP ¼
Z

LðθÞdμðθÞ: ð6Þ
Because of the symmetry of the problem, the range of
integration in Eq. (6) can be reduced to θ ∈ ð0; π=2Þ with
the probability measure

dμBðθÞ ¼ cos θdθ; ð7Þ
in the billiard case, and

(θ)L

θ

P

+

’P

r2

r1

Fig. 1. Cylindrical shell geometry and the definition of parameters
for a point on the outer shell boundary. The chord length LðθÞ is given
by Eq. (12). Typical triangles used to calculate LðθÞ are shown by
dashed lines.
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dμdðθÞ ¼
2
π dθ; ð8Þ

in the diffusive scattering case. The resulting mean free path
is defined as

Leff ¼
R
∂Ω ℓPdS
j∂Ωj : ð9Þ

In virtue of the cylindrical symmetry, for all the points on the
shell–ambient interface, the very same average chord length
ℓP ¼ ℓ2 is obtained after performing the integral in Eq. (6). Si-
milarly, all the points on the shell–core interface are equiva-
lent when the value of the integral in Eq. (6) is concerned; in
this case, we denote the average chord length by ℓ1. Conse-
quently, the surface integral in Eq. (9) is replaced by a simple
algebraic relation:

Leff ¼
r2ℓ2 þ r1ℓ1
r2 þ r1

: ð10Þ

Given the radii r1 and r2 of the inner and outer surfaces of the
cylindrical shell, respectively, it turns out expedient to addi-
tionally introduce shorthands R ¼ r2, D ¼ r2 − r1, and
q ¼ r1=r2.

A. Point Located on the Outer Shell Boundary
As shown in Fig. 1, one distinguishes two sets of trajectories:
the first set of trajectories occurs when j sin θj ≤ r1=r2,
whereas the second set of trajectories takes place when
j sin θj > r1=r2. The separation point between the two differ-
ent sets of trajectories is

j sin θcj ¼ r1=r2 ¼ q: ð11Þ
In accord with the integration range, θc will be taken as a po-
sitive number from the interval ð0; π=2Þ. The corresponding
lengths of the two sets of trajectories as a function of θ are
then [27]

LðθÞ ¼
�
r2 cos θ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 − r22sin

2θ
q

; jθj ≤ θc
2r2 cos θ; jθj > θc

: ð12Þ

The upper formula follows on applying the law of cosines for a
triangle formed by the sides of length L, r1, and r2 (see also
Fig. 1), and solving a quadratic equation for L. The lower for-
mula follows on using an elementary definition of cosine for a
right-angled triangle circumscribed by a circle. Upon substi-
tuting Eq. (12) into the integral in Eq. (6), for ℓ2, one finds

ℓ2 ¼ S1 þ S3 − S2; ð13Þ
with

S1 ¼ 2r2

Z π=2

θc
cos θdμðθÞ; ð14Þ

S2 ¼
Z θc

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 − r22sin

2θ
q

dμðθÞ; ð15Þ

S3 ¼ r2

Z θc

0
cos θdμðθÞ: ð16Þ

Obviously [see Eq. (11)] θc → 0 in the limit r1 → 0. One then
recovers from Eq. (10) the special case of a homogeneous
circle, in which case [41]

Leff ≡ ℓ2 ¼ S1ðθc ¼ 0Þ ¼
�
πR=2; billiard scattering
4R=π; diffusive scattering

: ð17Þ

B. Point Located on the Inner Shell Boundary
For points on the inner shell boundary, or, on the shell–core
interface (see Fig. 2), it turns out that the integral in Eq. (6)
with the billiard and diffusive can be more easily performed in
the coordinates with the origin coinciding with the centers of
the two concentric circles forming the shell boundaries. In
what follows, the coordinates at point P will be referred to
as the θ-coordinates, and the latter coordinates as the θ0-
coordinates. (See Fig. 2 for θ and θ0 definitions.) Summarizing
the results of [27], on applying the law of cosines, the chord
length in the θ0-coordinates is

Lðθ0Þ ¼ ½r21 þ r22 − 2r1r2 cos θ0�1=2: ð18Þ

The angle θ0 is limited within the interval for which
cos θ0 ∈ ð1; r1=r2Þ, i.e., θ0 ∈ ð0; θ0mÞ, where [see Eq. (11)]

cos θ0m ¼ q ¼ r1=r2: ð19Þ

Similarly to a spherical shell case [27], it turns out expedient
to introduce a shorthand

β ¼ r21 þ r22
2r1r2

≥ 1; ð20Þ

which obeys the following straightforward relations:

β � 1 ¼ ðr2 � r1Þ2
2r1r2

; ð21Þ

β − ðr1=r2Þ ¼
r22 − r21

2r1r2
; ð22Þ

β2 − 1 ¼ ðr22 − r21Þ2
ð2r1r2Þ2

: ð23Þ

To this end, recast Lðθ0Þ in Eq. (18) in terms of x ¼ cos θ0 and
β [27]:

(θ)Lθ

θ’

+

P

P’

r

r

1

2

Fig. 2. Cylindrical shell geometry and the definition of parameters
for a point on the inner shell boundary. The chord length L in
θ0-coordinates is given by Eqs. (18) and (24). A triangle used to
calculate the highlighted chord length L by the cosine formula c2 ¼
a2 þ b2 − 2ab cos θ in θ0-coordinates is shown by dashed lines.
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Lðθ0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2r1r2

p
ðβ − xÞ1=2: ð24Þ

For future convenience, the following two formulas are given:

cos θdθ ¼ r2

Lðθ0Þ
�
x −

1 − x2

2ðβ − xÞ
�
dθ0; ð25Þ

dθ ¼
�
x −

1 − x2

2ðβ − xÞ
�

dθ0
x − ðr1=r2Þ

: ð26Þ

3. BILLIARD SCATTERING
According to the general billiard formula in Eq. (4), one gets
for planar billiards (d ¼ 2)

LB ¼ πjΩj
j∂Ωj : ð27Þ

Then, in the special case of a circular shell,

LB ¼ π
2
ðr2 − r1Þ: ð28Þ

In this section, the billiard formula in Eq. (28) will be con-
firmed by an explicit averaging according to Eq. (10) with
the respective ℓ1 and ℓ2 calculated with the reduced probabil-
ity measure dμB given by Eq. (7).

A. Point Located on the Outer Shell Boundary
On performing the respective integrals in Eqs. (14)–(16) with
the probability measure dμB [Eq. (7)] one finds

S1 ¼ 2r2

Z π=2

θc
cos2θdθ ¼ r2

�π
2
− θc

�
− r1

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

q
; ð29Þ

S3 ¼ r2

Z θc

0
cos2θdθ ¼ r2

θc
2
þ r1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

q
: ð30Þ

In arriving at the above results for S1 and S3, we have used
Eq. (A1) and that [see Eq. (11)]

sin 2θc ¼ 2 sin θc cos θc ¼ 2q
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

q
: ð31Þ

Regarding

S2 ¼
Z θc

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 − r22sin

2θ
q

cos θdθ ¼ r2

Z
q

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − t2

q
dt; ð32Þ

where t ¼ sin θ, the integral can be readily performed on using
Eq. (A2):

S2 ¼ r2

�
t

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − t2

q
þ q2

2
arcsin

t

q

�����q
0
¼ πr21

4r2
: ð33Þ

Thus, the mean-free path in a billiard measure for a point
located on the outer shell boundary is

ℓ2 ¼ S1 þ S3 − S2

¼ r2

2
½π − arcsinðr1=r2Þ� −

r1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðr1=r2Þ2

q
−
πr21
4r2

; ð34Þ

where we have substituted [see Eq. (11)]

θc ¼ arcsinðr1=r2Þ: ð35Þ

Obviously,

ℓ2 →
πr2
2

ðr1 → 0Þ: ð36Þ

The limiting value is the billiard mean-free path for a homo-
geneous cylinder [see Eq. (17)].

B. Point Located on the Inner Shell Boundary
Upon using consecutively Eqs. (24) and (25),

LðθÞ cos θdθ ¼ r2

�
x −

ð1 − x2Þ
2ðβ − xÞ

�
dθ0; ð37Þ

where x ¼ cos θ0. Hence

ℓ1 ¼ r2

Z θ0m

0

�
x −

ð1 − x2Þ
2ðβ − xÞ

�
dθ0 ¼ C1 þ C2; ð38Þ

where [see Eq. (19)]

C1 ¼ r2

Z θ0m

0
cos θ0dθ0 ¼ r2

Z ffiffiffiffiffiffiffi
1−q2

p

0
dx ¼ r2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

q
; ð39Þ

and (with minus sign in Eq. (38) absorbed in the denominator)

C2 ¼
r2

2

Z θ0m

0

1 − x2

x − β dθ0 ¼ r2

2

Z
1

q

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

x − β dx

¼ r2

2

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
− β arcsinxþ

ffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 1

q
arcsin

1 − βx
x − β

�����1
q

¼ r2

2

�π
2
ð

ffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 1

q
− βÞ −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

q
þ ð

ffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 1

q
þ βÞ arcsin q

�

¼ −
πr1
4

−
r2

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

q
þ r22
2r1

arcsin q: ð40Þ

The integral C2 has been performed on using the quadrature
formula in Eq. (A3). In arriving at the result for C2, we have
used Eq. (A7) and [see Eqs. (20) and (23)] that

ffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 1

q
∓β ¼

�
−q
1=q

: ð41Þ

Note that, within the integration range,

x ≥ r1=r2; x ≤ 1 ≤ β ¼ r21 þ r22
2r1r2

: ð42Þ

On combining the partial results of Eqs. (39) and (40), one
finds

ℓ1 ¼ C1 þ C2 ¼
r2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðr1=r2Þ2

q
−
πr1
4

þ r22
2r1

arcsinðr1=r2Þ:
ð43Þ

In virtue of arcsin r1=r2 ∼ r1=r2 as r1 → 0, one has ℓ1 → R in
the limit r1 → 0.
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C. Final Result
On combining Eqs. (34) and (43),

r2ℓ2 þ r1ℓ1 ¼
π
2
ðr22 − r21Þ: ð44Þ

The billiard formula in Eq. (28) for the resulting mean free
path LB is now straightforwardly recovered upon substituting
the partial result in Eq. (44) into the averaging formula
in Eq. (10).

4. DIFFUSIVE SCATTERING

A. Point Located on the Outer Shell Boundary
The respective integrals in Eqs. (14) and (16) with the measure
dμd given by Eq. (8) can be straightforwardly performed:

S1 ¼
4r2
π

Z π=2

θc
cos θdθ ¼ 4

π ðr2 − r1Þ; ð45Þ

S3 ¼
2r2
π

Z θc

0
cos θdθ ¼ 2

π r1: ð46Þ

The integral in Eq. (15) is recast as

S2 ¼
2r1
π

Z θc

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1=qÞ2sin2θ

q
dθ: ð47Þ

The latter integral can be expressed {see Eq. (1.5.36.1) of [43]}
as

S2 ¼
2
π

�
r2E½arcsin½ðsin θÞ=q�; q2�

− r1

�
r2

r1
−
r1

r2

�
F ½arcsin½ðsin θÞ=q�; q2�

�
jθc0

¼ 2
π r2Eðq

2Þ − 2
π
r22 − r21

r2
Kðq2Þ; ð48Þ

where we have made use of Eqs. (11), (A8), and (A9), and
Kðq2Þ≡ Fðπ=2; q2Þ and Eðq2Þ≡ Eðπ=2; q2Þ denote the com-

plete elliptic integrals of the first and second kind, respectively
{see Eqs. (17.3.1-4) of [44]}. Eventually,

ℓ2 ¼ S1 þ S3 − S2 ¼
2
π

�
2r2 − r1 − r2Eðq2Þ þ

r22 − r21

r2
Kðq2Þ

�
:

ð49Þ

For completeness, in the limit r1 → 0, one finds on using
Eq. (A11)

ℓ2 ∼
2
π f2r2 − r1 þ r2½Fðq2Þ − Eðq2Þ�g →

4r2
π ðr1 → 0Þ:

ð50Þ

As expected, the result in Eq. (17) for a homogeneous cylinder
is recovered in the limit r1 → 0.

B. Point Located on the Inner Shell Boundary
On using consecutively Eqs. (24) and (25) with x ¼ cos θ0,

LðθÞdθ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2r1r2

p �
x −

1 − x2

2ðβ − xÞ
� ðβ − xÞ1=2

x − q
dθ0: ð51Þ

Thus

ℓ1 ¼
2
π

Z θ0m

0
LðθÞdθ ¼ C1 − C2; ð52Þ

where

C1 ¼
2
π

ffiffiffiffiffiffiffiffiffiffiffi
2r1r2

p Z θ0m

0

xðβ − xÞ1=2
x − q

dθ0; ð53Þ

C2 ¼
2
π

ffiffiffiffiffiffiffiffiffi
r1r2

2

r Z θ0m

0

ð1 − x2Þ
ðx − qÞðβ − xÞ1=2 dθ

0

¼ 2
π

ffiffiffiffiffiffiffiffiffi
r1r2

2

r Z
1

q

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

ðx − qÞðβ − xÞ1=2 dx: ð54Þ

One finds

C1 ¼ −
4i
π

ffiffiffiffiffiffiffiffiffiffiffi
2r1r2
β − 1

s
fð1þ q − βÞFðarcsinϕ1;mÞ

− qΠðn; arcsinϕ1;mÞ þ ðβ − 1ÞEðarcsinϕ1;mÞgjqx¼1;

ð55Þ
whereΠ is an incomplete elliptic integral of the third kind {see
Eq. (17.2.14) of [44] with m ¼ sin2 α; see also Eq. (A10)}:

ϕ1 ¼ ϕ1ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
β − x

β þ 1

s
< 1; m ¼ β þ 1

β − 1
> 1;

n ¼ β þ 1
β − q

> 1: ð56Þ

Note that the inequalities in Eq. (42) hold within the integra-
tion range. On the other hand,

C2 ¼
4
π

ffiffiffiffiffiffiffiffiffi
r1r2

2

r ffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

β − q

s
þ 4i

π

ffiffiffiffiffiffiffiffiffi
r1r2

2

r � ð1 − q2Þffiffiffiffiffiffiffiffiffiffiffi
β þ 1

p ðβ − qÞ

×Π
�β − q

β þ 1
;Φ2

����β − 1
β þ 1

�
−
ð1 − qÞ
ðβ − qÞ

ffiffiffiffiffiffiffiffiffiffiffi
β þ 1

p
F

�
Φ2

����β − 1
β þ 1

�

þ
ffiffiffiffiffiffiffiffiffiffiffi
β þ 1

p
E

�
Φ2

����β − 1
β þ 1

������q
x¼1

; ð57Þ

where

Φ2 ¼ Φ2ðxÞ ¼ i sinh−1i

ffiffiffiffiffiffiffiffiffiffiffi
β þ 1
β − x

s
: ð58Þ

A hint at arriving at the expressions in Eqs. (55) and (57) for
the integrals C1 and C2 has been provided by Wolfram inte-
grator [45] (see also online supplementary material [46]).

C. Final Result
The exact result for the mean-free path Ld in the diffusive scat-
tering case can be now straightforwardly obtained by substi-
tuting Eqs. (55) and (57) into Eq. (52). However, this results in
a largely unmanageable expression of limited practical value,
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since numerical integration can be performed rather easily.
The results obtained by numerical integration are shown in
Fig. 3. The Fortran F77 code fsc2d.f, which employs the rou-
tine qromo.f in combination with the routines polint.f and
midpnt.f, all of Numerical Recipes [47], is freely available
online [48].

Nevertheless, there is still one important use of the exact
analytical results of the preceding sections: they enable one to
derive an analytic approximation in the thin-shell limit D ≪ 1.
Bearing on the experience from the spherical shell case [27],
one expects that at least the leading term of the asymptotic for
D ≪ 1 can be derived from any of ℓ1 or ℓ2. Indeed, in the thin-
shell limit, both ℓ1 and ℓ2 should approach the same value.
Given that the analytic expression for ℓ2 [see Eq. (49)] is much
simpler than that for ℓ1 [see Eqs. (52), (55), and (57)], we begin
with the former. In the limit D → 0, one finds, on using the
identities in Eqs. (A12)–(A14) in Eq. (49),

Ld;asmp ∼ ℓ2 ∼
2
π

�
r2 − r1 þ

r2

4
ð1 − q2Þ lnð1− q2Þ

−
r2

2
ð1 − q2Þ lnð1 − q2Þ þ r2ð1 − q2Þ

�
1
4
− ln2þ 2 ln2

��

∼
D

π ln
�

R

2D
þ 1
4

�
þ 2
π ð1þ 2 ln2ÞDþOðD2 lnDÞ: ð59Þ

Interestingly, the leading term asymptotic consisting of the
very first term on the right-hand side of Eq. (59) sets in only
for (from an experimental point of view) extremely thin shells
with D=R≲ 0:1 (see Fig. 4). In general, both terms in Eq. (59)
are required. Surprisingly enough, the two-term asymptotic
Ld;asmp given by Eq. (59) describes the exact mean-free path
Ld in the diffusive scattering case almost over the entire pa-
rameter range of D=R. As illustrated in Fig. 4, Ld;asmp is within
10% of Ld forD=R≲ 0:9, within ≈5% of Ld forD=R≲ 0:5, with-
in ≈2% of Ld for D=R≲ 0:25, and within 1% of Ld

for D=R≲ 0:13.

5. DISCUSSION
The effect of a size-corrected dielectric function [Eq. (3)] for
elongated structures is expected to be more pronounced that
the effect of the so-called nonlocal dielectric function dis-

cussed by McMahon et al. [34]. Indeed, given vF ¼ 1:38 ×
1015 nm=s of gold and R ¼ 2 nm in Figs. 1, 2 of [34], one
has LB ¼ π nm and vF=LB ≈ 724THz. The latter value is at least
fortyfold of the gold bulk damping constant Γ0 cited in the
literature (between ≈4:4 and ≈18THz [49]) and roughly 1=3
of the gold plasma frequency ωp [49].

Since our results are, except for the assumptions regarding
the surface scattering, model independent, they apply in prin-
ciple to any material, or an enclosure, wherein its constituents
or components perform a free motion. In the case of nanopho-
tonic and nanoplasmonic applications, the latter presumes
free electron metals, such as alkali metals, aluminum, copper,
gold, and silver, or suitable semiconductor materials. A
threshold length scale below which the free-path effect is ex-
pected to be relevant in noble metals is about 15nm [16,17,50].
(See in this regard the results for nanorods with widths above
15nm [16] and below 15nm [17].)

A. Two-Dimensional versus Three-Dimensional
Formulas
One can apply d ¼ 2 results if and only if the paths along the
cylinder, or nanowire, axis are irrelevant for damping. This is
expected to be the case if either an external field is applied
perpendicularly to the cylinder axis, or an intrinsic optical
mode propagating in a nanowire is one of transverse electric
(TE) and transverse electromagnetic (TEM) modes, i.e., a
mode that does not have any electric field component in
the direction of propagation.

The billiard formula in Eq. (28) in the cylindrical shell case
cannot be obtained from the general billiard mean-free path
LB given by Eq. (4) for d ¼ 3 starting with a circular cylinder
of radius r and a finite length ℓ and then taking the limit ℓ → ∞.
Indeed, in the latter case,

4jΩj
j∂Ωj ¼

4πr2ℓ
2πrℓ½1þ ðr=ℓÞ� → 2r: ð60Þ

This is because of nonzero contributions of the paths along
the cylinder axis. The latter suggests that the billiard for-
mula in Eq. (4) for d ¼ 3 has to be used when describing
the linewidth of a longitudinal, or long-axis, plasmon (LAP)

Fig. 3. (Color online) Mean-free path in the cylindrical shell case for
the billiard and diffusive scattering models as a function of the ratio
D=R, where D is the shell thickness and R is the shell outer radius.

Fig. 4. (Color online) Exact and approximate mean-free path in the
cylindrical shell case for the diffusive scattering model as a function of
the ratio D=R, where D is the shell thickness and R is the shell outer
radius.
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of nanorods [16,17,51]. The billiard formula for d ¼ 2may then
be relevant for describing the linewidth of a short-axis plas-
mon (SAP) of nanorods. Unfortunately, a SAP produces a
much weaker signature and is thus more difficult to determine
experimentally. Consequently, a large body of experimental
work only concerns the LAPs [16,17,51].

B. Billiard versus Diffusive Model
In a homogeneous cylinder case, the difference between the
billiard and diffusive models of surface scattering is reflected
merely by a different slope of the linear dependence of a
mean-free path Leff on the cylinder radius R [Eq. (17)]. Simi-
larly to a spherical shell case [27], qualitatively different de-
pendencies on the inner and outer shell radii result for
different model cases in the shell geometry (see Fig. 3). A lin-
ear behavior of LB ¼ πD=2 on the shell thickness D for the
billiard model [Eq. (28)] should be contrasted with a compli-
cated functional dependence on the shell thickness D in the
diffusive case (see Section 4). Preliminary experimental re-
sults in a spherical shell case are compatible with the billiard
model and appear to rule out both the Euler diffusive scatter-
ing and an isotropic scattering [27]. See in this regard recent
experimental results by Lermé et al. [50]. Quite amazingly,
although Lermé et al. [50] did not emphasize it, their experi-
mental data regarding silver nanospheres fit nicely to the bil-
liard model [27]. The latter yields for the mean-free path the
value of 4R=3 {e.g., Eq. (141) of [27]}, which, when compared
with Eq. (1) of [50], would have yielded g ¼ 3=4 ¼ 0:75. The
latter value is almost in the middle of an overall experimental
value of gexp ≈ 0:7� 0:1 determined by Lermé et al. [50]. Com-
pared to the billiard model, the diffusive model of Euler and
Kreibig would yield, for the mean-free path, the value of R, or
g ¼ 1 [27]. Therefore, one expects that the billiard model will
provide a better description of the free-path effect also
for d ¼ 2.

C. Radiation Damping and Other Effects
For larger particles the right-hand side of Eq. (1) has to be
supplemented with a volume-dependent radiation damping

term {see Eq. (3) of [16,17]}. Importantly, when determining
a size-corrected dielectric function according to Eq. (3), the
damping constant in a Drude-like term εD;sd in Eq. (3) remains
to be γ ¼ Γ, given by the size-corrected value of Eq. (1)
without the radiative reaction term [24,52]. Indeed, the radia-
tion damping term [52], which can be traced down to the k3-
dependent radiative reaction term in the Abraham–Lorentz
equation {see, e.g., Section 16.2 and Eqs. (16.8-9) of [53]}, ac-
counts for the linewidth broadening that is extrinsic to the
dielectric function [24,52].

The free-path effect described in the article could be most
easily detected for a dielectric core and metal, or semiconduc-
tor, shell. In the case of bimetallic structures, such as those
investigated by Liu and Guyot-Sionnest [51], one has to take
into account the effect of the so-called chemical interface

damping: because occupied states in the core and shell region
may coincide in their energy, the electronic wave functions of
the conduction electrons are transmitted through a metal–
metal interface and the electrons are no longer confined by
the metal–metal interface.

6. CONCLUSIONS
Mean-free path Leff was calculated for the circular shell geo-
metry that is a special case of the domain that is (i) neither
convex nor (ii) simply connected. For such domains, the early
results by Cauchy [35,36] and others [37–42], based on the
average projected area of convex bodies, could no be longer
applied. Leff was calculated under the assumptions of (i) bil-
liard scattering and of (ii) diffusive scattering. Whereas, for
the billiard model, Leff depends linearly on the shell thickness
D as Leff ¼ πD=2, the mean-free path in the diffusive scattering
case is a complicated expression involving complete and in-
complete elliptic integrals of the first, second, and third kinds.
Nevertheless, a linear combination of D and D lnðR=2DÞ,
where R is the outer circle radius, was shown to capture the
functional dependence of Leff in the diffusive scattering case
remarkably well over almost the entire parameter range. Simi-
larly to a spherical shell geometry, circular shell geometry
enables us to distinguish between the different models of
electron scattering. Hopefully, this would be performed in fu-
ture experiments on single and well-controlled dielectric-
core–metal-shell nanowires.

APPENDIX A: SUMMARY OF ELEMENTARY
FORMULAS

Z
b

a

cos2 θdθ ¼ b − a

2
þ 1
4
ðsin 2b − sin 2aÞ; ðA1Þ

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − x2

p
dx ¼ x

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − x2

p
þ a2

2
arcsin

x

jaj ; ðA2Þ

Z ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

x − β dx ¼ −

Z
xþ βffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p dx − ðβ2 − 1Þ
Z

1

ðx − βÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p dx

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
− β arcsinx

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 1

q
arcsin

1 − βx
x − β ; ðA3Þ

Z
1

ðx − βÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p dx ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 1

p arcsin
1 − βx
x − β ; ðA4Þ

Z
dxffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ¼ arcsinx; ðA5Þ

Z
xdxffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
; ðA6Þ

1 − βx
x − β ¼

�
1; x ¼ 1
−q; x ¼ q

: ðA7Þ

All the integration formulas can be straightforwardly verified
by a direct differentiation. Equation (A2) can be indepen-
dently found as formula (1.2.46.8) of [43]. The first equality
in Eq. (A3) follows by a straightforward recasting of the
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integrand. The final result in Eq. (A3) can also be verified by
combining Eqs. (A4)–(A6). Equation (A4) is given as
Eq. (1.2.53.15) of [43], whereas Eqs. (A5) and (A6) are elemen-
tary integrals.

The incomplete elliptic integrals F , E, and Π of the first,
second, and third kind, respectively, are defined by

Fðϕ;mÞ ¼
Z ϕ

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m sin2 θ

p ; ðA8Þ

Eðϕ;mÞ ¼
Z ϕ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m sin2 θ

p
dθ; ðA9Þ

Πðn;ϕ; nÞ ¼
Z ϕ

0

dθ
ð1 − nsin2θÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −msin2θ

p : ðA10Þ

The above integrals are, in principle, defined for any value of
m and n. One often speaks about elliptic integrals only if the
range of m and n parameters is limited to 0 ≤ m;n ≤ 1 [43,44].
One has {see Eqs. (17.3.26), (17.3.27) of [44]}

Kðq2Þ − Eðq2Þ ∼ π
4
q2 ðq → 0Þ; ðA11Þ

Kðq2Þ ∼ 1
2
ln

16
1 − q2

¼ −
1
2
lnð1 − q2Þ þ 2 ln 2 ðq → 1−Þ;

ðA12Þ

Eðq2Þ ∼ 1 −
ð1 − q2Þ

4
lnð1 − q2Þ − ð1 − q2Þ

�
1
4
− ln 2

�
ðq → 1−Þ:

ðA13Þ

Regarding the thin-shell limit D ¼ r2 − r1 → 0, the following
expressions have been repeatedly used:

1 − q2 ¼ 1 −
ðR − DÞ2

R2 ¼ 2D
R

−
D2

R2 ¼
2D
R

�
1 −

D

2R

�
; ðA14Þ

1
1 − q2

∼
R

2D

�
1þ D

2R

�
¼ R

2D
þ 1
4
: ðA15Þ
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