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The band structure for an absorptive two-dimensional photonic crystal made from cylinders consisting of a
Drude material is calculated. Absorption causes the spectrum to become complex and form islands in the
negative complex half-plane. The boundaries of these islands are not always formed by the eigenvalues cal-
culated for Bloch vectors on the characteristic path, and we find a hole in the spectrum. For realistic param-
eter values, the real part of the spectrum is hardly influenced by absorption, typically less than 0.25%. The
employed method uses a Korringa–Kohn–Rostoker procedure together with analytical continuation. This re-
sults in an efficient approach that allows these band-structure calculations to be done on a Pentium III per-
sonal computer. © 2003 Optical Society of America
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1. INTRODUCTION
Photonic crystals (PCs) are dielectric structures with an
electric permeability (dielectric function, permittivity)
«(x), possessing a spatial periodicity, i.e., «(x) 5 «(x
1 aj). Depending on the number of independent lattice
vectors aj , we are dealing with one-dimensional (1D),
two-dimensional (2D), or three-dimensional (3D) photonic
crystals. They offer new ways of manipulating the emis-
sion and propagation of light. The propagation of radia-
tion inside a PC is affected by the periodicity in a way
similar to that of an electron traveling in a periodic po-
tential in an ordinary (semiconductor) crystal, giving rise
to the photonic analog of the well-known band structures
of solid-state physics.1–4 Depending on their properties,
such as the lattice type and its constituting materials,
PCs can exhibit complete photonic bandgaps (CPBGs), a
frequency domain in which the propagation of radiation is
inhibited, irrespective of direction and polarization.
Also, partial or stop gaps can be present, in which case ra-
diation cannot propagate in certain directions but can in
others.

In order to obtain a CPBG, strong scattering is needed,
and hence a large contrast of dielectric constants is re-
quired. In the optical region, only a limited number of
dielectrics are available with a sufficiently high dielectric
constant. However, recent calculations5–8 showed that
photonic crystals, made from metallic spheres, exhibiting
a Drude-like behavior, in a dielectric background, can
have large CPBGs. An example of such a metal is silver,
in which case large CPBGs are found for 3D photonic
crystals and, for propagation in the plane of periodicity,
also for 2D photonic crystals. Here it was assumed that «
depends on both position and frequency, « 5 «(x, v), but
is real, i.e., there is dispersion but absorption is absent.
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Since absorption can be appreciable in certain fre-
quency ranges, this raises the question as to what hap-
pens in such a situation. Two objects are of importance,
the band structure and Green’s functions. The first can
give information about decay in time due to absorption
and the second about the attenuation of a beam traveling
through an absorptive PC. Moreover, the imaginary part
of the Green’s function also appears in expressions for the
radiative decay of embedded atoms.9

In the absorptive case, Maxwell’s equations are

] tD~x, t ! 5 ]x 3 B~x, t ! 2 J~x, t !,

] tB~x, t ! 5 2]x 3 E~x, t !,

]x • D~x, t ! 5 r~x, t !, ]x • B~x, t0! 5 0,

D~x, t ! 5 «0E~x, t ! 1 P~x, t !,

P~x, t ! 5 E
2`

t

dsx~x, t 2 s !E~x, s !, (1)

where x(x, t) is the electric susceptibility. Substitution
of a harmonic solution

u~x, v, t ! 5 exp@2ivt#u~x, v! (2)

results in the Helmholtz equation (U is the unit 3 3 3
matrix and c, the speed of light, is set equal to 1, so «0
5 1),

@v2«~x, v! 2 H0#u~x, v! 5 0, H0 5 2]x
2U 1 ]x]x ,

(3)

featuring the space- and frequency-dependent, complex,
electric permeability

«~x, v! 5 1 1 x̂~x, v!,
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x̂~x, v! 5 E
0

`

dt exp@ivt#x~x, t !. (4)

From a fundamental point of view, the presence of absorp-
tion raises a number of questions. If we try to determine
the field modes u(x, v), it turns out that, in absorptive
frequency regions (Im «(x, v) Þ 0), no solutions exist for
real v. This is not unexpected, absorption giving rise to
decay and hence no purely oscillating behavior. We re-
call that the integrated density of states is obtained by
counting eigenvalues, up to a certain value, for a system
in a box, and then by taking a thermodynamic limit;
means that this quantity is no longer defined. But then
it is not obvious how bandgaps can be defined.

Recently, Tip et al.,10 in a mathematical analysis of the
problem, proposed a definition of bandgaps for this case.
Thus if for any initial fields at time t 5 t0 , the Fourier
transform Ẽ(v) of the electric field E(t) vanishes for v in
a certain range D, then D is said to be a bandgap. This
means that field modes with frequency v P D are absent,
and this definition coincides with the usual one in the
nonabsorptive case. The above authors then showed that
such bandgaps D do not occur in absorptive frequency re-
gions. This can be understood by realizing that band-
gaps are connected to the vanishing of the coherent sum
of reflected waves from an infinite number of scatterers
on lattice positions. But if a wave is attenuated before
and after being scattered from a particular scatterer, the
total reflected wave is changed and need no longer vanish.
In the above reference, it was also found, making a Bloch
decomposition and using analytic continuation tech-
niques, that, for a fixed vector k from the first Brillouin
zone B, the eigenvalues v(k) (which are real and make up
the bands as k runs through B in the nonabsorptive case)
become complex (they turn into resonances) and give rise
to areas in the negative complex half-plane. The basic
requirement for this is that the complex dielectric func-
tion (x(t) is the electric susceptibility)

«~v! 5 1 1 E
0

`

dt exp@ivt#x~t !, (5)

which has an analytic continuation in the upper half-
plane, can also be continued in the lower half-plane.
Then we can find solutions of Eq. (3) with v → z, z
P C2 , the lower complex half-plane, but their meaning
only becomes clear after the analysis in Ref. 10.

In this work we complement these findings with a nu-
merical investigation for an absorptive 2D photonic crys-
tal, consisting of Drude-like cylinders on a square lattice
in a nonabsorptive host material with the dielectric con-
stant «h . Thus the system shows nontrivial periodicity
in two directions and is homogeneous in the third, with
the lattice vectors’ magnitudes taken of the order of an op-
tical wavelength. The dielectric function of Drude-like
materials reads

«~v! 5 1 2
vp

2

v~v 1 ig!
, (6)

which has the correct analytic continuation properties for
the above analysis to be applicable.
In earlier work,8 we considered the silver case, using
the experimental Re «(v) and neglecting absorption, i.e.,
the system is dispersive but not absorptive. In the opti-
cal regime, silver has a large frequency window for which
Im «(v) remains approximately constant at a value of 0.5,
which is very small as compared with the values of
Im «(v) in other metals. Outside this window, it rapidly
takes on values of 10 and higher. Inside this low Im «
frequency window, we found a CPBG with a relative gap
width (the gap width expressed as a percentage of the
midgap frequency) of 9.9% for silver scatterers in an air
host dielectric. Re «(v) is negative in this frequency win-
dow, and we found that the size of the gap increases with
increasing dielectric constant of the host material. In ad-
dition, we found a CPBG with a relative width of ;37% in
a frequency range where the imaginary part of the dielec-
tric constant is significantly above 0.5.

2. METHOD
We performed our band-structure calculations with a 2D
photonic version of the Korringa–Kohn–Rostoker (KKR)
method.11,12 For the 3D case, see Ref. 13. It uses a
Green’s functions approach and has as basic building
blocks the single particle (in our case cylinder) transition
matrix on the energy shell and the so-called structure
constants (see the appendix for the definition). This
method has a number of significant advantages that
make it quite suitable for the type of systems we are deal-
ing with. We consider PCs with circular cylindrical scat-
terers. Up to now, most experimental work on 2D photo-
nic crystals has dealt with such PCs. According to the
KKR procedure, the fields are decomposed into a set of cy-
lindrical harmonics. Thus we take advantage of the sym-
metry of the scatterers and achieve rapid convergence, in
most cases with cylindrical harmonics with angular-
momentum quantum number m < 8. Also, dispersion is
no problem within the KKR method, which is obviously
very important when dealing with dispersive media such
as metals.

We have chosen the parameters of the Drude-model di-
electric function such that it resembles the dielectric func-
tion of silver as closely as possible. For silver, the real
part of the experimental «Ag(v) closely follows the Drude
expression throughout a large frequency window, except
for frequencies very close to the zero crossing v0 of
Re «(v), and we fitted vp to the experimental data of sil-
ver in this frequency window. Previously, where we ne-
glected the absorption, we found the large CPBGs men-
tioned above by varying the lattice spacing a and filling
fraction f. In order to see the influence of the presence of
absorption on these results, we again have chosen the
same values for these parameters: vp 5 1.1(2pc/a) (nu-
merical values of v are identical to that of a/l) and f
5 65%. In contrast with Re «(v), Im «(v) remains more
or less constant at a value of 0.5 in a large frequency win-
dow in the visible. Since we want to verify the assump-
tion that a realistic amount of absorption does not influ-
ence the previous results (see Ref. 14), we have taken g
such that Im «Drude(v) > Im «Ag(v) in this frequency win-
dow of low Im «Ag , so we chose g 5 0.05(2pc/a).
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In the absence of absorption, the eigenvalues v(k),
which form the band structure, are all real. According to
the KKR method, these eigenvalues are the roots of the
determinant

D~v, k! 5 det@1 2 t~v!g~v, k!#, (7)

i.e., the values of v for which D(v, k) 5 0 for fixed k,
where t is the ‘‘on-the-energy-shell’’ single-scatterer tran-
sition matrix, and g is a matrix containing the structure
constants (see also the appendix). As discussed above,
these eigenvalues become complex in the presence of ab-
sorption, i.e., the real eigenvalues turn into resonances.
In the following, we denote these complex eigenvalues as
z(k) in order to distinguish them from the real eigenval-
ues v(k) of the nonabsorptive case. In the corresponding
solution

u~x, z, t ! 5 exp@2iz~k!t#u~x, z ! (8)

of the Bloch-decomposed Helmholtz equation, Im z(k) is
the decay rate of the eigenmode. The real spectrum of
the nonabsorptive case is now replaced by the complex set

C 5 $z~k!uk P B%, (9)

in the lower complex half-plane.
Without absorption, D(v, k) is a real function of the

real argument v. When we fix k, we are left with the 1D
problem of finding the real and nonnegative roots v j(k)
on the real v axis. One-dimensional root finding is very
robust: If D(v1 , k) and D(v2 , k) have a different sign,
there must be either a root or a pole in the interval
(v1 , v2). They are easily distinguished, and excellent
algorithms exist for their determination.

With absorption included, the eigenvalues become com-
plex, so D(z, k) must be considered for complex z, and we
have to use 2D root-finding algorithms for their determi-
nation. Most of the algorithms for finding a root in
higher dimensions rely on having a sufficiently accurate
initial guess of the location of the root. If the initial
guess is not good enough, the root-finding algorithm
might not find the root one is after. An obvious way of
getting a proper initial guess is by initially neglecting the
absorption. As said, robust 1D root finding can be em-
ployed to obtain the real eigenvalues v(k). Since, as
mentioned earlier, we assume that the band structures
are not affected significantly by the presence of realistic
amounts of absorption, we expect the actual complex ei-
genvalues z(k) to be close to the real eigenvalues v(k).
Therefore it would seem likely that v(k) is a good first
guess to be used by the 2D root-finding routine to calcu-
late z(k).

In this paper, we only consider fields propagating in the
plane of periodicity. In that case, the field equations can
be decoupled into two scalar ones, one for each polariza-
tion. By E polarization, we mean the polarization for
which the E field is parallel to the symmetry axis, and for
the H polarization the H field is parallel to the symmetry
axis.
A. E Polarization
For the E polarization, we applied the above strategy of
first calculating v(k) and use this as a first estimate to be
used for the 2D root-finding routine in order to calculate
z(k).

B. H Polarization
For the H polarization, this strategy had to be refined.
Previously, we found a large number of flat bands in the
frequency domain centered around vsp 5 vp /(1 1 «h)1/2,
the surface-plasmon frequency for a flat interface. In the
vicinity of these flat bands, D(z, k) behaves very wildly
since its roots and poles are lying very close to each other.
Under these conditions, the root-finding routine we em-
ployed for the E polarization was not able to produce z(k)
if v(k) was used as an initial estimate. We obtained an
improved estimate for the position of a complex eigen-
value by exploiting the fact that D(z, k) is analytic out-
side its poles. Then, by Cauchy’s formula, denoting by
Res(D21; z0), the residue in the pole z0 of D21(z, k) and
G a contour around z0 , avoiding other poles of D21(z, k):

R
G
D21~z, k!dz 5 2pi Res~D21; z0!, (10)

R
G
zD21~z, k!dz 5 2pi Res~~zD21!; z0!

5 2piz0 Res~D21; z0!. (11)

This procedure has the advantage that poles of D(z, k)
appear as zeros of D21(z, k) and are harmless in the con-
tour integration. This leads to a satisfactory estimate of
z0 from the ratio of Eqs. (10) and (11). Thus we first cal-
culated the real eigenvalue with absorption neglected.
Next, we estimated from this eigenvalue the area in the
complex plane where the root of D(z, k) is expected to ap-
pear. We then evaluated D(z, k) for 20 values of z on a
square contour enclosing this area, and from this we ob-
tained an approximation of both integrals. This proce-
dure rendered an excellent starting value, which, upon in-
sertion into the original 2D root-finding routine, quickly
converged to the complex root, typically within six itera-
tions.

It is not necessary to go through the whole process de-
scribed above for every Bloch vector k. Indeed, once the
spectrum has been calculated for two close k values, we
can simply extrapolate the eigenvalues associated with
the two previous Bloch vectors to obtain an excellent ini-
tial estimate. As a result, once the complex eigenvalues
are calculated for two k vectors, calculating the rest of C
requires only minor computational effort and is calculated
very fast. Although we did not do so, this procedure also
opens the way to obtain the z(k) values for larger values
of Im «. Once a z(k) is found for certain Im «, we can use
it as an input for finding z(k) for a slightly larger Im «
and so on.

3. RESULTS
In Figs. 1 and 2, we present some of our results for the E
and H polarizations, respectively. The lower parts of
these figures show the eigenvalues zj(k) in the complex
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Fig. 1. Complex eigenvalues and the real part of the band struc-
ture calculated on the characteristic path for the E polarization.
The lower graph shows the eigenvalues in the complex plane.
The upper graph shows the real part of the band structure.

Fig. 2. Complex eigenvalues and the real part of the band struc-
ture calculated on the characteristic path for the H polarization.
The lower graph shows the eigenvalues in the complex plane.
The upper graph shows the real part of the band structure.
plane (fourth quadrant) calculated for Bloch vectors k on
the so-called characteristic path Bc (connecting the spe-
cial points of high symmetry in the Brillouin zone). For
comparison with nonabsorptive photonic band plots
$v j(k)uk P Bc%, we also plot Re zj(k) as k runs through
Bc , in the upper part of Figs. 1 and 2. Below, we refer to
$zj(k)uk P Bc% as the jth (complex) band, and $Re zj(k)uk
P Bc% as the real part of the jth (complex) band. With-

out absorption, this definition coincides with the ordinary
definition of bands. To make a comparison between the
real bands $v j(k)uk P Bc% and the real parts of the com-
plex bands $Re zj(k)uk P Bc% more transparent, we ex-
changed the plot axes of the upper plots so that the hori-
zontal axes of both the upper and the lower plots are the
same. Bands can, but need not, overlap, and their union
constitutes the spectrum, which may or may not cover the
nonnegative real axis. In the real case, the breaks in the
spectrum are the band gaps.

With absorption included, the eigenvalues acquire a
negative imaginary part. The bands on the characteris-
tic path of the nonabsorptive case now change into closed
loops $zj(k)uk P Bc% in the fourth quadrant of the com-
plex plane. If we increase the Drude model parameter g,
thereby increasing the Im «(v) for all v, uIm zj(k)u in-
creases monotonically, for all j and k.

From the lower plots in Figs. 1 and 2, we see that, even
within the same band $zj(k)uk P Bc%, the decay rate
Im zj(k) can vary significantly. For instance, for the band
of the E polarization lowest in frequency at Re z(k)
' 0.8, the ratio Im z(kM)/Im z(kG) of the decay rates at
the M point and at the G point has a value of 2.75. This
ratio is very sensitive to the value of the filling fraction.
It increases if we lower the filling fraction. For instance,
at a filling fraction of 30%, Im z(kM)/Im z(kG) already
reaches a value of 10, and it increases further for a de-
creasing filling fraction. Below this band, there are no
more bands, as was already known from the absorption-
less calculations.

The results for the H polarization are shown in Fig. 2.
In the upper part, we see the well-known8,14 real part of
the band structure consisting of both dispersive bands
and a high number of very flat bands centered around the
surface-plasmon frequency vsp 5 vp /A2. We see that
these flat bands have the highest decay rates uIm z(k)u
and are quite insensitive to the value of k. Upon de-
creasing the frequency (Re z) below vsp , uIm zu decreases
again until it reaches Im z 5 0 at Re z 5 0.

In our previous study,8 we focused on a frequency win-
dow for which Im « is small, of the order of 0.5, in which
we found a 9.9% CPBG. We also found a 36.9% CPBG
below the frequency window of low Im «. We considered
it less relevant because we expected absorption to domi-
nate the behavior of the fields in the frequency range
where this very large CPBG occurs due to the relatively
high value of Im «. Indeed, if we raise g, thereby raising
the value of uIm «(v)u for all v, we see that uIm z(k)u is also
raised. However, Fig. 2 shows that the eigenvalues right
above and below the lowest gap have an imaginary part of
approximately 20.01 in units of 2pc/a, which is roughly
half of the typical value of 20.022 of the imaginary part of
the eigenvalues located around the 9.9% gap found in the
low Im « frequency window. We compared the real part
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of the complex band structure with the band structure
without absorption that we calculated earlier.8 Our pre-
vious assumption that the real part of the band structure
is hardly affected by absorption turns out to be justified.
If we denote by v(k) the real eigenvalue without absorp-
tion, i.e., g 5 0, and by z(k) the corresponding complex
eigenvalue for g 5 0.05, then Re z(k) 2 v(k) never ex-
ceeds 0.25% of v(k) in the frequency window investigated.
In other words, the real part of the band structure is
hardly affected by absorption for realistic amounts of ab-
sorption. For small filling fractions ( f ' 0.1), this was
found earlier by Kuzmiak and Maradudin.14

So far, all calculations presented in this paper were
done for Bloch vectors on the characteristic path Bc . In
fact, virtually all published band structures, not only in
the field of photonic crystals but also the conventional
electronic band structures of solid-state physics, are cal-
culated with only the characteristic path. But in the
complex case, the usual arguments, justifying this proce-
dure, break down, and, in order to see what happens, we
recalculated the spectrum including k values outside Bc .
We found that in most cases the loops $zj(k)uk P Bc% in
the complex plane are filled up entirely with eigenvalues
zj(k) for k outside of the characteristic path. But there
are exceptions, in particular for some higher bands. Fig-
ure 3 shows a detail of the spectrum shown in Fig. 1.
The eigenvalues calculated on the characteristic path are
shown in black, and the ones calculated outside are
shown in gray. This graph has two striking features.
First, it shows the spectrum has a hole. It is small and
elongated but significant, and we checked that it is not a
numerical artifact. Quite recently, it was found by
Gralak,15 for a system of square rods rather than cylin-
ders, that such structures emerge as a partial overlap of
pieces of spectrum with different symmetries. Second,
the black points do not enclose all eigenvalues calculated
outside the characteristic path. However, it is still true
that, for the real part of the band structure, the values of
Re z(k) for k P Bc form a boundary for the value of
Re z(k) for k P B.

Fig. 3. Detail of Fig. 1 showing the eigenvalues in the complex
plane. The black dots correspond to eigenvalues calculated for a
Bloch vector on the characteristic path. The gray area repre-
sents the eigenvalues calculated for Bloch vectors that are not on
the characteristic path. Note the small white area inside the
gray, where no spectrum is present.
4. DISCUSSION
Using Laplace-transform techniques, we can express the
electric field at time t . 0 in terms of the initial fields at
t 5 0 according to (z 5 v 1 id, d.0),

E~x, t ! 5 ~2p!21E dv exp@2izt#^xu@z2«~x, z !

2 H0#21uy&$izD~y, 0! 2 ]y 3 B~y, 0!%

5 ~2p!21E dv exp@2izt#G~x, y, z !$izD~y, 0!

2 ]y 3 B~y, 0!%. (12)

Although this is the case for its Bloch-decomposed
components,10 it is not obvious that G(x, y, z) itself can
be continued analytically into the lower complex half-
plane C2 ; the contributions to the spectrum from differ-
ent k can in principle fill up the whole lower complex half-
plane. But our computations show that the spectrum of
z2«(x, z) 2 H0 consists of bounded isolated areas in C2 .
Each of them consists of a set $zj(k)uk P B%. Wrapping
contours around these, we then obtain contributions to
E(x, t) that decay exponentially in time except for the
lowest-frequency part in the H-polarization case.

Two competing effects determine the absorption prop-
erties of a single scatterer as a function of the frequency v
of an incident field. On the one hand, Im «(v) decreases
with increasing frequency. Thus the attenuation of a
field inside a Drude metallic cylinder becomes less with
increasing frequency, tending to zero in the high-
frequency limit.

On the other hand, Re «(v), which has a negative value
in the range considered here, determines the reflection of
the fields from the metal below the plasma frequency and
decreases (becomes more negative) with decreasing fre-
quency. As a result of this effect, transmission into the
absorbing material decreases with decreasing frequency,
i.e., the field is more expelled from the material, and
hence less absorption takes place. Thus, also in the low-
frequency limit the absorption should vanish.

The competition of these two effects can be seen in the
V shape formed by the eigenvalues of the H-polarized
states in the complex plane, cf. Fig. 2, lower plot. For
low frequencies, Im z(k) tends to zero with decreasing fre-
quency (Re z(k)), indicating that the field is increasingly
expelled from the absorbing cylinders. This effect is not
seen for the E polarized states, simply because there are
no eigenstates with this polarization below the cut-off fre-
quency of roughly 0.75.

For higher frequencies, roughly above va/2pc 5 1,
uIm z(k)u decreases with increasing frequency, albeit not
monotonically, indicating that the effect of the decrease of
Im « starts to dominate over the effect of the increase of
the penetration depth due to the increase of Re «.

The highest values of the decay rate uIm z(k)u for the H
polarization are found for frequencies around the surface-
plasmon resonance frequency vsp 5 vp /A2. As noted
earlier, there are many very flat bands in this frequency
region. These flat bands correspond to excitations of in-
dividual cylinder surface-plasmon resonances. These
resonances are strongly localized near a cylinder surface
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and have only very little overlap with the modes of neigh-
boring cylinders. Obviously, these single-cylinder reso-
nances do not depend on the angle of incidence, and the
only effect of the lattice is their broadening into resonance
bands, which look very flat compared with the Bragg
bands resulting from multiple scattering. A nice discus-
sion of this point can be found in the book by Ziman.16

We note in passing that in the metallo-dielectric case, the
effect of single-scatterer resonances is much stronger
than in a purely dielectric case, which has been consid-
ered by Moroz and Tip.17

For the E polarization, no bands appear below va/2pc
5 0.75. Inside the first band, Im z(k) decreases with in-
creasing frequency. This could, at least partly, be attrib-
uted to the decrease of Im «. However, the value of
uIm z(k)u at the top of the first band is nearly 2.7 times
smaller than its value at the bottom of the second band,
whereas Im « is significantly smaller in the latter case.
This suggests that for complex eigenvalues with a real
part at the top of a band gap (in the real part of the spec-
trum), the associated field modes are larger inside an ab-
sorptive scatterer than for eigenvalues at the top of the
previous band. The situation is reminiscent of the
Borrmann effect, previously observed in x-ray
scattering.18 The origin of this effect is that fields in the
proximity of bandgap edges approach a standing wave.
In the proximity of one bandgap edge, fields are mostly lo-
calized in the regions of a low dielectric constant,
whereas, in the proximity of the other bandgap edge, they
are mostly localized in the regions of a high dielectric con-
stant. This sort of behavior can already be observed for a
simple 1D periodic stacking of dielectric layers.19

For both polarizations, we find that the resonance fre-
quencies Re z(k) differ less than 0.25% from the eigenfre-
quencies in the absorptionless case. Thus if one is only
interested in the real part of the band structure of an ab-
sorptive photonic crystal, it is safe to neglect absorption.

A. Characteristic Path
It is common practice to restrict band-structure calcula-
tions to k values along a characteristic path. This is rig-
orously true for 1D Schrödinger systems, where the eigen-
values are monotonous functions of k (now a 1D
parameter, ranging through an interval, its end points
constituting the characteristic path). In the 3D Schrö-
dinger case, this also gives correct results, but here the
situation is different. When we no longer limit ourselves
to Bloch vectors on the characteristic path connecting the
points of high symmetry in the Brillouin zone, but instead
consider all Bloch vectors, we find that in most cases the
eigenvalues calculated for Bloch vectors on the character-
istic path form a boundary of areas in the complex plane
that are filled up entirely with eigenvalues calculated for
Bloch vectors not on the characteristic path. However,
we found several exceptions to this behavior. Figure 3
shows a few of them.

First, as noted earlier, there is a narrow, but signifi-
cant, elongated hole in the spectrum roughly near z
5 1.14 2 0.012i. We checked that this hole is not an ar-
tifact of the finiteness of the grid size of k points in the
Brillouin zone. The hole remains no matter how much
we refine the grid of k points. Indeed, as noted above,
holes can appear by partly overlapping spectral areas
with different symmetry.

Figure 3 also shows an example of a significant area,
shown in gray, consisting of eigenvalues for k not on the
characteristic path, which is not enclosed by eigenvalues
calculated on the characteristic path, the points plotted in
black. Both the hole in the spectrum and the presence of
eigenvalues outside of the area enclosed by the eigenval-
ues calculated on the characteristic path imply that is no
longer sufficient to calculate the spectrum only on the
characteristic path.

B. Method
Our complex band structures have been calculated by
combining analytic continuation in tandem with the KKR
approach. This turns out to be a powerful combination
that results in very fast and accurate results. The KKR
method is well adapted for calculations for structures con-
taining metals, as was already seen for calculations with-
out absorption. Combining this method with analytic
continuation in order to include absorption in the calcula-
tions hardly slows down the calculations. The latter
have been performed on a regular personal computer with
a single Pentium III processor at 500 Mhz. The calcula-
tions like the ones done for Figs. 1 and 2, for which the
spectrum has been calculated for 504 k points on the
characteristic path, take approximately 30 min. The
speed of the calculation method becomes all the more rel-
evant for calculating the entire spectrum, i.e., not only on
the characteristic path, but for Bloch vectors in the entire
Brillouin zone.

C. Related Work
Recently, Sakoda et al.20 presented band-structure calcu-
lations for 2D photonic crystals with Drude metallic cyl-
inders with parameters close to ours. Their calculations
were based upon the so-called finite-difference time-
domain method. According to this method, Maxwell’s
equations are discretized both in space and in time. The
above authors numerically calculated the evolution of the
discretized fields (on which Bloch boundary conditions are
imposed) generated by an oscillating point dipole. From
the calculated fields, both the resonance frequencies v(k),
corresponding to our Re z(k), and the decay times t(k),
corresponding to our uIm z(k)u21, were extracted. Their
results compare well with the results of our calculations,
as far this can be judged from the graphs presented in
this reference.

D. Outlook
The complex band structure we obtained gives informa-
tion about the time evolution of the fields. Other inter-
esting properties of absorptive photonic crystals include
the spatial attenuation of fields propagating through such
structures and decay rates of embedded excited atoms.
Both are determined by the Helmholtz Green’s function.
Work on this subject is now in progress. Note that for
atomic decay rates, only the imaginary part of the Green’s
function is required.9 It replaces the usual electromag-
netic density of states. The latter no longer exists, the
eigenvalues now being complex.
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Another matter, involving the Green’s function, con-
cerns the competition between absorption and reflection.
Obviously a wave traveling through a solid piece of Drude
metal, such as silver, will be completely absorbed. But if
the scatterers show strong reflection (small penetration
depth) in a certain frequency range, the situation can be
different for a photonic crystal, even at large filling frac-
tions.

APPENDIX A: KKR METHOD
Let L be a simple (Bravais) periodic lattice. According to
the Bloch theorem, a propagating wave c in a periodic
structure with the symmetry L is characterized by the
Bloch momentum k. The latter describes the transla-
tional properties of c by any lattice vector rs P L,

c ~r 1 rs! 5 c ~r!exp~ik • rs!. (A1)

The Bloch property holds irrespective of the nature of a
wave, i.e., it is the same for scalar and vector waves. We
shall confine ourselves to the case where, outside the scat-
terers, the wave function c satisfies the scalar Helmholtz
equation,

@D 1 s 2#c 5 0, (A2)

with s being a positive constant and s 2 5 «0v2. Let
G0L( s, k, R) denote the free Green’s function associated
with the Helmholtz equation (A2) on the unit cell with
Bloch boundary conditions. It can be expressed as

G0L~ s, k, R! 5 (
rs P L

G0~ s, R 2 rs!exp~ik – rs!

5 (
rs P L

G0~ s, R 1 rs!exp~ 2 ik – rs!,

(A3)

where R 5 r 2 r8 and G0 denotes a free-space Green’s
function associated with Eq. (A2). In the 2D case consid-
ered here,

G0~ s, R! 5 G0~ s, r, r8! 5 2
i

4
H0

1~ sR !, (A4)

where R 5 uRu, and H0
1 is the Hankel function of the first

kind for index m 5 0. Within the KKR method,21,22 the
band structure is determined by solving the KKR secular
equation, cf. Eq. (7),

det@1 2 t~ s!g~ s, k!# 5 0, (A5)

where t is a single-scatterer scattering t matrix and g is
the matrix of structure constants.12 Both t and g are con-
sidered as matrices with matrix elements labeled by pairs
of angular-momentum numbers (m, m8). In the scalar
case in 2D, the matrix elements of g in the angular-
momentum basis are defined as expansion coefficients of

G0L~ s, k, R! 2 G0~ s, R!

5 (
m,m8

gm,m8~ s, k!Jm~ sr !exp~imwr!Jm8~ sr8!

3 exp~2imwr!, (A6)
where Jm are the regular cylindrical Bessel functions.
Structure constants can be efficiently calculated by an ex-
tension of the Ewald method introduced by Ozorio de
Almeida.11

Provided one only considers propagation of waves in-
side of the plane of periodicity, the wave equations for the
transverse polarizations are decoupled. In this case, one
can apply the scalar formalism to the Z component of ei-
ther the electric field of the magnetic field, the Z axis be-
ing the coordinate axis perpendicular to the plane of pe-
riodicity.

If L is not a simple (Bravais) periodic lattice, i.e., there
is more than one scatterer in the primitive lattice cell, the
matrices t and g in Eq. (A5) become matrices with entries
labeled by multi-indices ma, where m is defined as before
and a runs over all the scatterers in the primitive lattice
cell.
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